Semin Speech Lang 2002; 23(4): 245-256
DOI: 10.1055/s-2002-35799
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Prosody in Apraxia of Speech

Frank R. Boutsen, Sarah S. Christman
  • The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
Further Information

Publication History

Publication Date:
03 December 2002 (online)


Prosody is a complex process that involves modulation of pitch, loudness, duration, and linearity in the acoustic stream to serve linguistic and affective communication goals. It arises from the interaction of distributed neural networks that may be anatomically and functionally lateralized. Intrinsic prosody is mediated largely through left hemisphere mechanisms and encompasses those elements of linguistic microstructure (e.g., syllabic magnitudes and durations, basic consonantal and vocalic gesture specifications, and so) that yield the segmental aspects of speech. Extrinsic prosody is processed primarily by right hemisphere (RH) mechanisms and involves manipulation of intonation across longer perceptual groupings. Intrinsic prosody deficits can lead to several core symptoms of speech apraxia such as difficulty with utterance initiation and syllable transitionalization and may lead to the establishment of inappropriate syllable boundaries. The intrinsic prosody profiles associated with acquired apraxia of speech, developmental speech apraxia, and ataxic dysarthria may aid in the clinical differentiation of these disorders.


  • 1 Sherrington C S. Problems of muscular receptivity.  Nature . 1924;  113 892-894
  • 2 Gage N, Poeppel D, Roberts T PL, Hickok G. Auditory evoked M100 reflects onset acoustics of speech sounds.  Brain Res . 1998;  814 236-239
  • 3 Hertrich I, Mathiak K, Lutzenberger W, Ackermann H. Differential impact of periodic and aperiodic speech-like acoustic signals on magnetic M50-M100 fields.  Neuroreport . 2000;  11 4017-4020
  • 4 Poeppel D, Yellin E, Phillips C. Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds.  Cognitive Brain Research . 1996;  4 231-242
  • 5 Liss J M, Weismer G. Qualitative acoustic analysis in the study of motor speech disorders.  J Acoust Soc Am . 1992;  92 2984-2987
  • 6 Ross E D. The aprosodias: functional-anatomic organization of the affective components of language in the right hemisphere.  Arch Neurol . 1981;  38 561-569
  • 7 Bunton K, Kent R D, Kent J F. Perceptuo-acoustic assessment of prosodic impairment in dysarthria.  Clinical Linguistics and Phonetics . 2000;  14 13-24
  • 8 Brown G, Yule G. Discourse Analysis.  Cambridge, UK: Cambridge University Press; 1983
  • 9 Gerken L, McGregor K. An overview of prosody and its role in normal and disordered child language.  American Journal of Speech Language Pathology . 1998;  7 38-49
  • 10 Chafe W L. The flow of thought and the flow of language. In: Givon T, ed. Syntax and Semantics: Discourse and Syntax, Vol 12. New York: Academic Press 1979: 159-182
  • 11 Darley F L, Aronson A E, Brown J R. Differential diagnostic patterns of dysarthria.  J Speech Hear Res . 1969;  12 249-269
  • 12 Darley F L, Aronson A E, Brown J R. Cluster of deviant speech dimensions in the dysarthrias.  J Speech Hear Res . 1969;  12 462-496
  • 13 Munhall K G. Functional imaging during speech production.  Acta Psychologica . 2001;  107 95-117
  • 14 Holstege G, Bandler R, Saper C B, eds. The Emotional Motor Pathway. Progress in Brain Research, Vol.  107. New York: Elsevier; 1996
  • 15 DeNil L, Abbs J H. Influence of rate on the upper lip, lower lip, and jaw peak velocity sequencing during bilabial closing movements.  J Acoust Soc Am . 1991;  89 845-849
  • 16 Larson C R, Burnett T A, Kiran S, Hain T C. Effects of pitch-shift velocity on voice F0 responses.  J Acoust Soc Am . 2000;  107 559-564
  • 17 Larson C R, Burnett T A, Bauer J J, Kiran S, Hain T C. Comparison of voice F0 responses to pitch-shift onset and offset conditions.  J Acoust Soc Am . 2001;  110 845-848
  • 18 Cotterill R MJ. Cooperation of the basal ganglia, cerebellum, sensory cerebrum, and hippocampus: possible implications for cognition, consciousness, intelligence, and creativity.  Prog Neurobiol . 2001;  64 1-33
  • 19 Fujimura O. The C/D model and prosodic control of articulatory behavior.  Phonetica . 2000;  57 128-138
  • 20 Kent R D. Research on speech motor control and its disorders. A review and prospective.  J Commun Disord . 2000;  33 391-428
  • 21 Boutsen F R, Christman S S. Aprosodia: whether, where and why?. In: Maassen B, Hulstijn W, Kent R, van Lieshout PHMM, eds. Speech Motor Control in Normal and Disordered Speech. Nijmegen: Vantilt; 2001: 232-236
  • 22 Davis B L, MacNeilage P F, Matyear C L, Powell J K. Prosodic correlates of stress in babbling: an acoustical study.  Child Dev . 2000;  71 1258-1270
  • 23 Kewley-Port D, Preston M S. Early apical stop production: a voice onset time analysis.  Journal of Phonetics . 1974;  2 195-210
  • 24 Macken M A, Barton D. The acquisition of the voicing contrast in English: a study of voice onset time in word initial stop consonants.  Journal of Child Language . 1980;  7 433-458
  • 25 Ackermann H, Graber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders.  Brain Lang . 1997;  60 323-331
  • 26 Ackermann H, Graber S, Hertrich I, Daum I. Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain.  Brain Lang . 1999;  67 228-241
  • 27 Auzou P, Ozsancak C, Morris R J. Voice onset time in aphasia, apraxia and dysarthria: a review.  Clinical Linguistics and Phonetics . 2000;  14 131-150
  • 28 Laforce Jr R, Doyon J. Distinct contribution of the striatum and cerebellum to motor learning.  Brain and Cognition . 2001;  45 189-211
  • 29 Salmelin R, Schnitzler A, Schmitz F, Freund H J. Single word reading in developmental stutterers and fluent speakers.  Brain . 2000;  123 1184-1202
  • 30 Mayer M, Dogil G, Ackermann H. Prosody in speech function: a paradigm for functional imaging and first result. Proceedings on the Fifth Seminar on Speech Production: Models and Data. Munich: Universitat Munchen; 2000: 281-284
  • 31 Hirano S, Kojima H, Naito Y. Cortical speech processing mechanisms while vocalizing visually presented languages.  Neuroreport . 1997;  8 363-367
  • 32 Hirano S, Kojima H, Naito Y. Cortical processing mechanism for vocalization with auditory feedback.  Neuroreport . 1997;  8 2379-2382
  • 33 Houde J F, Nagarajan S, Merzenich M. Modulation of auditory cortex during speech production: a MEG study. Proceedings on the Fifth Seminar on Speech Production: Models and Data. Munich: Universitat Munchen; 2000: 249-252
  • 34 McGuire P K, Silbersweig D A, Frith C D. Functional anatomy of verbal self monitoring.  Brain . 1996;  119 907-917
  • 35 Ball T, Schreiber A, Feige B. The role of higher order motor areas in voluntary movement as revealed by high resolution EEG and fMRI.  Neuroimage . 1999;  10 682-694
  • 36 Martin R E, Goodyear B, Gati J, Menon R. Cerebral cortical representation of automatic and volitional swallowing in humans.  J Neurophysiol . 2001;  85 938-950
  • 37 Cunnington R, Windischberger L, Deecke L, Moser E. The preparation of self-initiated and externally triggered movement: a study of event-related fMRI.  Neuroimage . 2000;  15 373-385
  • 38 Sidtis J J, Strother S C, Anderson J R, Rottenberg D A. Are brain functions really additive?.  Neuroimage . 1999;  9 490-496
  • 39 Fowler C A. An event approach to the study of speech perception from a direct realist perspective.  Journal of Phonetics . 1986;  14 3-28
  • 40 Buccino C, Binkofski G R, Fink G R. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study.  Eur J Neurosci . 2000;  13 400-404
  • 41 Shergill S S, Bullmore E T, Brammer M J. A functional study of auditory verbal imagery.  Psychol Med . 2001;  31 241-253
  • 42 Studdert-Kennedy M. Imitation and the emergence of segments.  Phonetica . 2000;  57 276-283
  • 43 Ferguson C A, Farwell C B. Words and sounds in early language acquisition.  Language . 1975;  15 419-439
  • 44 Vihman M M. Phonological development.  Oxford, UK: Blackwell; 1996
  • 45 Kuhn G M. On the front cavity resonance and its possible role in speech perception.  J Acoust Soc Am . 1975;  58 428-433
  • 46 Remez R E, Rubin P F, Berns S M, Pardo J S, Lang J R. On the perceptual organization of speech.  Psychol Rev . 1994;  101 129-156
  • 47 McNeil M, Robin D A, Schmidt R A. Apraxia of speech: definition, differentiation, and treatment. In: McNeil MR, ed. Clinical Management of Sensorimotor Speech Disorders Stuttgart: Thieme 1997: 311-344
  • 48 McNeil M R, Doyle P, Wambaugh J. Apraxia of speech: a treatable disorder of motor planning and programming. In: Nadeau E, Gonzalez Rothi LJ, Crosson B, eds. Aphasia and Language New York: The Guilford Press 2000: 221-266
  • 49 Van der Merwe A. A theoretical framework for the characterization of pathological speech and sensorimotor control. In: McNeil MR, ed. Clinical Management of Sensorimotor Speech Disorders Stuttgart: Thieme 1997: 1-25
  • 50 Odell K, Shriberg L D. Prosody-voice characteristics of children and adults with apraxia of speech.  Clinical Linguistics and Phonetics . 2001;  15 275-307