References
For recent reviews on the subject
of organoindium chemistry see:
<A NAME="RD19202ST-1A">1a</A>
Cintas P.
Synlett
1995,
1087
<A NAME="RD19202ST-1B">1b</A>
Li C.-J.
Tetrahedron
1996,
52:
5643
<A NAME="RD19202ST-1C">1c</A>
Li C.-J.
Chan T.-H.
Tetrahedron
1999,
55:
11149
<A NAME="RD19202ST-1D">1d</A>
Chauhan KK.
Frost CG.
J.
Chem. Soc, Perkin Trans. 1
2000,
3015
<A NAME="RD19202ST-2A">2a</A> With
aldehydes:
Lombardo M.
Girotti R.
Morganti S.
Trombini C.
Org.
Lett.
2001,
3:
2981
<A NAME="RD19202ST-2B">2b</A> With ketones:
Alcaide B.
Almendros P.
Rodriguez-Acebes R.
J. Org. Chem.
2002,
67:
1925
<A NAME="RD19202ST-2C">2c</A> With imines:
Vilaivan T.
Winotapan C.
Shinada T.
Ohfune Y.
Tetrahedron Lett.
2001,
42:
9073
<A NAME="RD19202ST-2D">2d</A>
Beuchet P.
Marrec ML.
Mosset P.
Tetrahedron
Lett.
1992,
33:
5959
<A NAME="RD19202ST-2E">2e</A> With sulfonimines:
Lu W.
Chan TH.
J.
Org. Chem.
2001,
66:
3467
<A NAME="RD19202ST-2F">2f</A> With acyl cyanides:
Yoo B.-W.
Lee S.-J.
Choi K.-H.
Keum S.-R.
Ko J.-J.
Choi K.-I.
Kim J.-H.
Tetrahedron Lett.
2001,
42:
7287
<A NAME="RD19202ST-2G">2g</A> With acetals:
Kwon JS.
Pae AN.
Choi KI.
Koh HY.
Kim Y.
Cho YS.
Tetrahedron
Lett.
2001,
42:
1957
<A NAME="RD19202ST-2H">2h</A> With epoxides:
Yadav JS.
Anjaneyulu S.
Ahmed MM.
Subba Reddy BV.
Tetrahedron
Lett.
2001,
42:
2557 ;
and references therein
<A NAME="RD19202ST-3A">3a</A>
Chappell MD.
Halcomb RL.
Org. Lett.
2000,
2:
2003
<A NAME="RD19202ST-3B">3b</A>
Hirashita T.
Kinoshita K.
Yamamura H.
Kawai M.
Araki S.
J.
Chem. Soc., Perkin Trans. 1
2000,
825
<A NAME="RD19202ST-4A">4a</A>
Araki S.
Horie T.
Kato M.
Hirashita T.
Yamamura H.
Kawai M.
Tetrahedron
Lett.
1999,
40:
2331
<A NAME="RD19202ST-4B">4b</A>
Lee PH.
Ahn H.
Lee K.
Sung S.-Y.
Kim S.
Tetrahedron
Lett.
2001,
42:
37
<A NAME="RD19202ST-5A">5a</A>
Yadav JS.
Subba Reddy BV.
Muralidhar Reddy M.
Tetrahedron
Lett.
2000,
41:
2663
<A NAME="RD19202ST-5B">5b</A>
Pitts MR.
Harrison JR.
Moody CJ.
J. Chem. Soc., Perkin Trans. 1
2001,
955
<A NAME="RD19202ST-5C">5c</A>
Ranu BC.
Samanta S.
Guchhait SK.
J. Org. Chem.
2001,
66:
4102
<A NAME="RD19202ST-5D">5d</A>
Ranu BC.
Dutta J.
Guchhait SK.
Org. Lett.
2001,
3:
2603
<A NAME="RD19202ST-6A">6a</A>
Araki S.
Kamei T.
Hirashita T.
Yamamura H.
Kawai M.
Org. Lett.
2000,
2:
847
<A NAME="RD19202ST-6B">6b</A>
Pérez I.
Sestelo JP.
Sarandeses LA.
J. Am. Chem. Soc.
2000,
122:
4153
<A NAME="RD19202ST-6C">6c</A>
Takami K.
Yorimitsu H.
Shinokubo H.
Matsubara S.
Oshima K.
Org.
Lett.
2001,
3:
1997
<A NAME="RD19202ST-6D">6d</A>
Hirashita T.
Yamamura H.
Kawai M.
Araki S.
Chem. Commun.
2001,
387
<A NAME="RD19202ST-6E">6e</A>
Cooper IR.
Grigg R.
MacLachlan WS.
Thornton-Pett M.
Sridharan V.
Chem. Commun.
2002,
1372
<A NAME="RD19202ST-7">7</A>
Araki S.
Imai A.
Shimizu K.
Yamada M.
Mori A.
Butsugan Y.
J. Org. Chem.
1995,
60:
1841
<A NAME="RD19202ST-8">8</A>
Araki S.
Usui H.
Kato M.
Butsugan Y.
J. Am. Chem. Soc.
1996,
118:
4699
<A NAME="RD19202ST-9A">9a</A>
Ranu BC.
Majee A.
Chem.
Commun.
1997,
1225
<A NAME="RD19202ST-9B">9b</A>
Fujiwara N.
Yamamoto Y.
J. Org. Chem.
1997,
62:
2318
<A NAME="RD19202ST-9C">9c</A>
Klaps E.
Schmid W.
J. Org. Chem.
1999,
64:
7537
<A NAME="RD19202ST-10">10</A>
Fujiwara N.
Yamamoto Y.
J. Org. Chem.
1999,
64:
4095
For some examples of alternative
transition metal-mediated enyne cycloisomerisation reactions see:
<A NAME="RD19202ST-11A">11a</A> With Cr:
Nishikawa T.
Kakiya H.
Shinokubo H.
Oshima K.
J. Am. Chem.
Soc.
2001,
123:
4629
<A NAME="RD19202ST-11B">11b</A> With Cu:
Ajamian A.
Gleason JL.
Org.
Lett.
2001,
3:
4161
<A NAME="RD19202ST-11C">11c</A> With Ni:
Tsuzuki T.
Miyake K.
Ikeda S.-I.
Sato Y.
Tetrahedron
1998,
54:
1063
<A NAME="RD19202ST-11D">11d</A> With Pd:
Nishida M.
Adachi N.
Onozuna K.
Matsumura H.
Mori M.
J. Org. Chem.
1998,
63:
9158
<A NAME="RD19202ST-11E">11e</A> With Pt:
Méndez M.
Muñoz MP.
Nevado C.
Cárdenas DJ.
Echavarren AM.
J.
Am. Chem. Soc.
2001,
123:
10511
<A NAME="RD19202ST-11F">11f</A> With Rh:
Evans PA.
Robinson JE.
J.
Am. Chem. Soc.
2001,
123:
4609
<A NAME="RD19202ST-11G">11g</A> With Ru:
Trost BM.
Rudd MT.
J.
Am. Chem. Soc.
2002,
124:
4178
<A NAME="RD19202ST-11H">11h</A> With Sn:
Fernández-Rivas C.
Méndez M.
Echavarren AM.
J. Am. Chem. Soc.
2000,
122:
1221
<A NAME="RD19202ST-11I">11i</A> With Ti:
Hicks FA.
Buchwald SL.
J.
Am. Chem. Soc.
1999,
121:
7026
<A NAME="RD19202ST-11J">11j</A> With Zr:
Gordon GJ.
Luker T.
Tuckett MW.
Whitby RJ.
Tetrahedron
2000,
56:
2113 ; and references therein
<A NAME="RD19202ST-12">12</A>
Marshall JA.
Grant CM.
J. Org. Chem.
1999,
64:
8214
<A NAME="RD19202ST-13A">13a</A>
Canac Y.
Levoirier E.
Lubineau A.
J. Org. Chem.
2001,
66:
3206
<A NAME="RD19202ST-13B">13b</A>
Shin JA.
Cha JH.
Pae AN.
Choi KI.
Koh HY.
Kang H.-Y.
Cho YS.
Tetrahedron Lett.
2001,
42:
5489
<A NAME="RD19202ST-14A">14a</A>
Loh T.-P.
Tan K.-T.
Yang J.-Y.
Xiang CL.
Tetrahedron
Lett.
2001,
42:
8701
<A NAME="RD19202ST-14B">14b</A>
Loh T.-P.
Tan K.-T.
Hu Q.-Y.
Tetrahedron
Lett.
2001,
42:
8705
For a general introduction to the
use of water as a solvent for organic synthesis see:
<A NAME="RD19202ST-15A">15a</A>
Li C.-J.
Chem.
Rev.
1993,
93:
2023
<A NAME="RD19202ST-15B">15b</A>
Li C.-J.
Chan TH.
Organic
Reactions in Aqueous Media
Klewer Academic Publishers;
Dordrect:
1997.
<A NAME="RD19202ST-15C">15c</A>
Organic
Synthesis in Water
Greico PA.
Blackie
Academic & Professional;
London:
1998.
<A NAME="RD19202ST-16">16</A>
General Experimental
Procedure. To a well-stirred solution of (E)-2-(4-bromobut-2-enyl)-(2-prop-2-ynyl)-malonic
acid dimethyl ester 4f (451 mg, 1.5 mmol)
in dry THF (1 mL) and distilled water (1 mL) at room temperature, was
added indium powder (Aldrich, 99.99%, 171 mg, 1.5 mmol,
1 equiv). The mixture was stirred for a further 18 hours and then
the reaction mixture was poured onto a mixture of Et2O
and dilute HCl (5% v/v). The aqueous layer was
extracted with Et2O (2 × 25 mL) and the combined organic
layers were washed with water (2 × 25 mL), saturated aqueous
NaCl (1 × 25 mL) and dried (MgSO4). Filtration
and removal of solvent gave a residue which was purified by chromatography
(SiO2, hexane/EtOAc, 5:1) to give the cyclised
product 5f (249 mg, 74%) as a
clear colourless oil (Rf = 0.52). 1H
NMR (360.13 MHz, CDCl3)
δH = 2.01
(1 H, dd, J = 11 Hz, 13 Hz),
2.57 (1 H, dd, J = 8 Hz, 13
Hz), 2.95 (1 H, ddd, J = 3 Hz,
6 Hz, 18 Hz), 3.08 (1 H, br d, J = 18
Hz), 3.17 (1 H, m), 3.82 (1 H, s with allylic coupling), 4.98 (1
H, s with allylic coupling), 5.05 (1 H, br s), 5.08 (1 H, m), 5.64
(1 H, ddd, J = 8 Hz, 10.5 Hz,
13 Hz) ppm. 13C NMR (100.62 MHz, CDCl3) δC = 40.70,
48.08, 53.20, 53.26, 58.91, 108.55, 116.51, 139.44, 150.76, 172.40, 172.59
ppm. IR (thin film): 3660, 3471, 3078, 2953, 1731, 1714, 1659, 1642,
1453, 1433, 1267, 1199, 1167, 1072, 917, 891, 821, 766, 718, 690,
666 cm-1. MS (FAB): m/z (%) = 225 (73.2) [MH+],
193 (36.5), 165 (65.1), 154 (74.3), 137 (68.1), 136 (61.7), 105
(100), 91 (49.7), 77 (49.1).
<A NAME="RD19202ST-17">17</A>
All compounds described gave 1H, 13C,
IR and MS data consistent with the structures reported.