Exp Clin Endocrinol Diabetes 2002; 110(6): 298-303
DOI: 10.1055/s-2002-34593
Article

© Johann Ambrosius Barth

Increased Intraabdominal Adipose Tissue Mass in Fructose Fed Rats: Correction by Metformin

G. Baret, J. Peyronnet 1 , D. Grassi-Kassisse 2 , Y. Dalmaz 1 , N. Wiernsperger 3 , A. Géloën
  • U352, INSA-Lyon, 69621 Villeurbanne, France
  • 1 UMR 5123 CNRS/UCB LYON1, 8 ave Rockefeller, 69373, Lyon cedex 08
  • 2 Department of Physiology and Biophysics, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
  • 3 LIPHA-INSERM U352, INSA-Lyon, 69621 Villeurbanne, France
Further Information

Publication History

received 22 October 01 first decision 11 February 02

accepted 10 April 02

Publication Date:
09 October 2002 (online)

Summary

The aim of the present study was to investigate the effect of metformin on insulin sensitivity, adipose tissue mass and sympathetic nervous system (SNS) activity in fructose fed rats. Male Sprague-Dawley rats were fed for six weeks either on a standard diet (C group) or on a high-fructose diet (F group, 10% in drinking water). In each group, half of the animals received metformin in drinking water for the last 4 weeks (500 mg/kg.day, C+M and F+M). Hyperinsulinemic-euglycemic clamps (6 mU insulin/kg.min) were performed on awake unrestrained rats to test insulin resistance. Six-week fructose diet induced a reproducible insulin resistance (31.1 ± 1.9 C vs 22.5 ± 3.2 mg glucose/kg.min F, p<0.05). Metformin treatment prevented insulin resistance (31.1 ± 1.9 C vs 30,2 ± 1.8 mg glucose/kg.min F+M, ns). To measure SNS activity, rats received, ten minutes before sacrifice, an i.p. injection of NSD (m-hydroxybenzylhydrazine, inhibitor of DOPA decarboxylase, 100 mg/kg). DOPA accumulation was used as an index of SNS activity and measured in superior cervical, coeliac ganglias, retroperitoneal and epidydimal adipose tissues. SNS activity was increased in F group only in coeliac ganglia (16.8 ± 1.1 C vs 22.6 ± 2.2 ng DOPA/ganglia, F group, p<0.05) and not in superior cervical ganglia (8.4 ± 0.7 C vs 8.6 ± 0.7 ng DOPA/ganglia, F group, ns). Metformin had no effect on SNS activity in coeliac ganglia of control animals (15.9 ± 1.7 C+M vs 16.8 ± 1.1 ng DOPA/coeliac ganglia C, ns) but prevented the increase in SNS activity in fructose fed animals (22.6 ± 2.2 F vs 16.3 ± 2.8 ng DOPA/coeliac ganglia F + M). In fructose fed rats, metformin significantly increased sympathetic activity in retroperitoneal white adipose tissue (RPWAT) resulting in a marked decrease in depot mass but had no effect on epidydimal WAT. In conclusion, our results demonstrate that fructose diet caused a selective increase of SNS activity in coeliac ganglia. Metformin increased SNS activity in RPWAT resulting in a significant reduction in RPWAT mass, lowered SNS activity in coeliac ganglia to control values and restore whole body insulin sensitivity.

References

  • 1 Abbasi F, Kamath V, Rizvi A A, Carantoni M, Chen Y D, Reaven G M. Results of a placebo-controlled study of the metabolic effects of the addition of metformin to sulfonylurea-rteated patients. Evidence for a central role of adipose tissue.  Diabetes Care. 1997;  20 1863-1869
  • 2 Abbasi F, Carantoni M, Chen Y D, Reaven G M. Further evidence for a central role of adipose tissue in the antihyperglycemic effect of metformin.  Diabetes Care. 1999;  22 179-180
  • 3 Bartness T J, Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat.  Am J Physiol. 1998;  275 R1399-R1411
  • 4 Blouquit M F, Géloën A, Koubi H, Edwards D, Gripois D. Decreased norepinephrine turnover rate in the brown adipose tissue of pre-obese fa/fa Zucker rats.  J Dev Physiol. 1993;  19 247-251
  • 5 Bunnag P, Hori M T, Ormsby B, Berger M E, Golub M S, Tuck M L. Impaired in vivo adrenergic responses in diet-induced hypertensive rats.  Hypertens Res. 1997;  20 17-21
  • 6 Fontbonne A, Charles M A, Juhan-Vague I, Bard J M, Andre P, Isnard F, Cohen J M, Grandmottet P, Vague P, Safar M E, Eschwege E. The effect of metformin on the metabolic abnormalilties associated with upper-body fat distribution.  BIGPRO Study Group Diabetes Care. 1996;  19 920-926
  • 7 Grodsky G M, Ma Y H, Edwards R H. Chronic sympathetic innervation of islets in transgenic mice results in differential desensitization of alpha-adrenergic inhibition of insulin secretion.  Adv Exp Med Biol. 1997;  426 129-138
  • 8 Gudbjornsdottir S, Friberg P, Elam M, Attvall S, Lonroth P, Wallin B G. The effect of metformin and insulin on sympathetic nerve activity, norepinephrine spillover and blood pressure in obese, insulin resistant normoglycemic, hypertensive men.  Blood Press. 1994;  3 394-403
  • 9 Klepser T B, Kelly M W. Metformin hydrochloride: an antihyperglycemic agent.  Am J Health Syst Pharm. 1997;  15 893-903
  • 10 Kraegen E W, James D E, Bennett S P, Chisholm D J. In vivo insulin sensitivity in the rat determined by euglycemic clamp.  Am J Physiol. 1983;  245 E1-E7
  • 11 Lee M K, Miles P DG, Khoursheed M, Gao K M, Moossa A R, Olefsky J M. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat.  Diabetes. 1994;  43 1435-1439
  • 12 Muntzel M S, Petersen J S. Effects of adrenergic, cholinergic and ganglionic blockade on acute depressor reponses to metformin in spontaneously hypertensive rats.  J Pharmacol Exp Ther. 281 (2) 618-623 1997; 
  • 13 Niijima A. Effect of glucose and other hexoses on efferent discharges of brown adipose tissue nerves.  Am J Physiol. 1986;  251 R240-2
  • 14 Pénicaud L, Berthaud M F, Morin J, Dubar M, Ktorza A, Ferré P. Rilmenidine normalizes fructose-induced resistance and hytpertension in rats.  J Hypertens. 16 (Suppl) 1998;  S45-S49
  • 15 Perriello G, Misericordia P, Volpi E, Santucci A, Ferrannini E, Ventura M M, Santeusanio F, Brunetti P, Bolli G B. Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production.  Diabetes. 1994;  43 920-8
  • 16 Radziuk J, Zhang Z, Wiernsperger N, Pye S. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver.  Diabetes. 1997;  46 1406-1413
  • 17 Rosen P, Ohly P, Gleichmann H. Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rat.  J Hypertens. 15 (Suppl) 1997;  S31-S38
  • 18 Schwarz J M, J. Acheson K, Tappy L, Piolino V, Muller M J, Felber J P, Jequier E. Thermogenesis and fructose metabolism in humans.  Am J Physiol. 1992;  262 E591-E598
  • 19 Thorburn A W, Storlien L H, Jenkins A B, Khouri S, Kraegen E W. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats.  Am J Clin Nutr. 1989;  49 1155-1163
  • 20 Tobey T A, Mondon C E, Zavaroni I, Reaven G M. Mechanism of insulin resistance in fructose-fed rats.  Metabolism. 1982;  31 608-612
  • 21 Van De Borne P, Hausberg M, Hoofman R P, Anderson E A. Hypersinsulinemia produces cardiac vagal withdrawal and nonuniform sympathetic activation in normal subjects.  Am J Physiol. 1999;  276 R178-R183
  • 22 Walgren M C, Young J B, Kaufman L N, Landsberg L. The effects of various carbohydrates on sympathetic activity in heart and interscapular brown adipose tissue of the rat.  Metabolism. 1987;  36 585-594
  • 23 Zavaroni I, Sander S, Scott S, Reaven G M. Effect of fructose feeding on insulin secretion and insulin action in the rat.  Metabolism. 1980;  29 970-973

A. Géloën

U352, Biochimie et Pharmacologie de la Médiation Lipidique

INSA de LYON, Domaine scientifique de la DOUA

Bâtiment L. Pasteur

11 avenue Jean Capelle

69621 VILLEURBANNE

Phone: 33 4 72 43 85 24

Email: geloen@insa-lyon.fr

    >