Semin Thromb Hemost 2002; 28(4): 369-378
DOI: 10.1055/s-2002-34306
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Pharmacokinetic and Pharmacodynamic Characterization of a Medium-Molecular-Weight Heparin in Comparison with UFH and LMWH

Susanne Alban1 , Dieter Welzel1 , H. Coenraad Hemker2
  • 1Institute of Pharmacy, University of Regensburg, Regensburg, Germany and
  • 2Department of Biochemistry and Synapse BV, Cardiovascular Research Institute (CARIM), Maastricht, The Netherlands
Further Information

Publication History

Publication Date:
23 September 2002 (online)

ABSTRACT

Despite the well-established medical use of heparins, the question arises whether the efficacy-safety ratio of the available heparins can still be improved. Therefore, a medium-molecular-weight heparin (MMWH), a new heparin with an average molecular weight of 10.5 kDa and a narrow molecular weight range (9.5 to 11.5 kDa) was developed. Its in vitro activities amount to 174.9 anti-factor Xa (aXa) U/mg and 170.0 antithrombin (aIIa) U/mg. In the presented randomized, double-blind, cross-over study in healthy volunteers, the pharmacokinetics and pharmacodynamics of MMWH are compared with those of an unfractionated heparin (UFH) and a low-molecular-weight heparin (LWMH; enoxaparin). After subcutaneous administration of 9000 aXa-U of either heparin in 16 volunteers, the prolongation of the activated partial thromboplastin time (aPTT), the aXa activity, and the aIIa activities were determined at 11 time points spread over 24 hours after injection. The ex vivo analysis revealed striking pharmacodynamic and pharmacokinetic differences between the three heparins. UFH had the lowest bioavailability regarding the aPTT, aXa, and aIIa activities. Enoxaparin exhibited only low aIIa activity but the highest aXa activity. Unlike UFH and enoxaparin, MMWH showed a high recovery of aIIa activity, which suggests that it combines the high potency to inhibit thrombin that characterizes UFH with the high bioavailability of the LMWHs. Consequently, substantially lower doses are needed to bring about effects comparable to those of UFH and LMWH.

REFERENCES

  • 1 Hirsh J, Warkentin T E, Shaughnessy S G. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety.  Chest . 2001;  119(Suppl 1) 64S-94S
  • 2 Dolovich L R, Ginsberg J S, Douketis J D, Holbrook A M, Cheah G. A meta-analysis comparing low-molecular-weight heparins with unfractionated heparin in the treatment of venous thromboembolism: examining some unanswered questions regarding location of treatment, product type, and dosing frequency.  Arch Intern Med . 2000;  160 1881-1888
  • 3 Young E, Wells P, Holloway S, Weitz J, Hirsh J. Ex-vivo and in-vitro evidence that low molecular weight heparins exhibit less binding to plasma proteins than unfractionated heparin.  Thromb Haemost . 1994;  71 300-304
  • 4 Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture.  Biochim Biophys Acta . 1985;  845 196-203
  • 5 Sarret M, Kher A, Toulemonde F. Low Molecular Weight Heparin Therapy.  1st ed. New York: Marcel Dekker 1999
  • 6 Hirsh J, Weitz J I. New antithrombotic agents.  Lancet . 1999;  353 1431-1436
  • 7 Weitz J I, Hirsh J. New anticoagulant drugs.  Chest . 2001;  119(Suppl 1) 39S-63S
  • 8 Walenga J M, Jeske W P, Samama M M. Fondaparinux: a synthetic heparin pentasaccharide as a new antithrombotic agent.  Expert Opin Investig Drugs . 2002;  11 397-407
  • 9 Shen G X. Development and current applications of thrombin-specific inhibitors. Current drug targets-cardiovascular & haematological disorders 2001;1. Available at: http://www. bentham.org/cdtchd1-1/shen/shen.htm
  • 10 Gustafsson D, Nystrom J, Carlsson S. The direct thrombin inhibitor melagatran and its oral prodrug H 376/95. Intestinal absorption properties, biochemical and pharmacodynamic effects.  Thromb Res . 2001;  101 171-181
  • 11 Lindhout T, Blezer R, Hemker H C. The anticoagulant mechanism of action of recombinant hirudin (CGP 39393) in plasma.  Thromb Haemost . 1990;  64 464-468
  • 12 Herault J P, Bernat A, Gaich C, Herbert M. Effect of new synthetic heparin mimetics on whole blood thrombin generation in vivo and in vitro in rats.  Thromb Haemost . 2002;  87 238-244
  • 13 Béguin S, Welzel D, Al Dieri A, Hemker H C. Conjectures and refutations on the mode of action of heparins.  Haemostasis . 1999;  29 170-188
  • 14 Béguin S, Lindhout T, Hemker H C. The mode of action of heparin in plasma.  Thromb Haemost . 1988;  60 457-462
  • 15 Sandset P M, Abildgaard U, Larsen M L. Heparin induces release of extrinsic coagulation pathway inhibitor (EPI).  Thromb Res . 1988;  50 803-813
  • 16 Abildgaard U, Lindahl A K, Sandset P M. Heparin requires both antithrombin and extrinsic pathway inhibitor for its anticoagulant effect in human blood.  Haemostasis . 1991;  21 254-257
  • 17 Valentin S, Ostergaard P, Kristensen H, Nordfang O. Synergism between full length TFPI and heparin: evidence for TFPI as an important factor for the antithrombotic activity of heparin [letter].  Blood Coagul Fibrinolysis . 1992;  3 221-222
  • 18 Abildgaard U. Heparin/low molecular weight heparin and tissue factor pathway inhibitor.  Haemostasis . 1993;  23(Suppl 1) 103-106
  • 19 Linhardt R J, Toida T. Heparin oligosaccharides: new analogues development and applications. In: Witczak ZJ, Nieforth KA, eds. Carbohydrates in Drug Design New York: Marcel Dekker 1997: 277-341
  • 20 Zacharski L R, Ornstein D L. Heparin and cancer.  Thromb Haemost . 1998;  17 289-297
  • 21 Linhardt R J, Loganathan D, al-Hakim A. Oligosaccharide mapping of low molecular weight heparins: structure and activity differences.  J Med Chem . 1990;  33 1639-1645
  • 22 Choay J, Petitou M, Lormeau J C. Structure-activity relationship in heparin. A synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity.  Biochem Biophys Res Commun . 1985;  128 134-140
  • 23 Valentin S, Larnkjer A, Ostergaard P, Nielsen J I, Nordfang O. Characterization of the binding between tissue factor pathway inhibitor and glycosaminoglycans.  Thromb Res . 1994;  75 173-183
  • 24 Alban S, Gastpar R. Plasma levels of total and free tissue factor pathway inhibitor (TFPI) as individual pharmacological parameters of various heparins.  Thromb Haemost . 2001;  85 824-829
  • 25 Witt I, Beeser H, Müller-Berghaus G. Minimalanforderungen zur Gewinnung von Citratplasma für hämostaseologische Analysen.  Lab Med . 1995;  19 143-145
  • 26 Gibaldi M, Perrier D. Pharmacokinetics.  2nd ed. New York: Marcel Dekker 1992
  • 27 Rowland M, Tozer T N. Clinical Pharmacokinetics.  Concepts and Applications. Philadelphia: Lea & Febiger 1989: 459-461
  • 28 Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics.  J Pharmacokinet Biopharm . 1978;  6 547-558
  • 29 Generica, Version 2.0, Prof. Dr. R. Zincke, Coesfeld, Germany, 1989 . 
  • 30 Holmer E, Mattsson C, Nilsson S. Anticoagulant and antithrombotic effects of heparin and low molecular weight heparin fragments in rabbits.  Thromb Res . 1982;  25 475-485
  • 31 Ockelford P A, Carter C J, Mitchell L, Hirsh J. Discordance between the anti-Xa activity and the antithrombotic activity in an ultra-low molecular weight heparin fraction.  Thromb Res . 1982;  28 401-409
  • 32 Thomas D P, Merton R E, Barrowcliffe T W, Thunberg L, Lindahl U. Effects of heparin oligosaccharides with high affinity for antithrombin III in experimental venous thrombosis.  Thromb Haemost . 1982;  47 244-248
  • 33 Bergqvist D, Nilsson B, Hedner U, Pedersen P C, Ostergaard P B. The effect of heparin fragments of different molecular weights on experimental thrombosis and haemostasis.  Thromb Res . 1985;  38 589-601
  • 34 Thomas D P, Merton R E, Gray E, Barrowcliffe T W. The relative antithrombotic effectiveness of heparin, a low molecular weight heparin, and a pentasaccharide fragment in an animal model.  Thromb Haemost . 1989;  61 204-207
  • 35 Hoppensteadt D A, Jeske W, Ahsan A, Walenga J M, Fareed J. Biochemical and pharmacologic profile of defined molecular weight fractions of heparin.  Semin Thromb Hemost . 1993;  19 12-19
  • 36 Samama M M, Bara L, Gerotziafas G T. Mechanisms for the antithrombotic activity in man of low molecular weight heparins (LMWHs).  Haemostasis . 1994;  24 105-117
  • 37 Greinacher A, Alban S, Dummel V, Franz G, Mueller-Eckhardt C. Characterization of the structural requirements for a carbohydrate based anticoagulant with reduced risk of inducing the immunological type of heparin-associated thrombocytopenia.  Thromb Haemost . 1995;  74 886-892
  • 38 Warkentin T E, Levine M N, Hirsh J. Heparin-induced thrombocytopenia in patients treated with low molecular weight heparin or unfractionated heparin.  N Engl J Med . 1995;  332 1330-1335
  • 39 Ockelford P A, Carter C J, Cerskus A, Smith C A, Hirsh J. Comparison of the in vivo hemorrhagic and antithrombotic effects of a low antithrombin-III affinity heparin fraction.  Thromb Res . 1982;  27 679-690
  • 40 Cade J F, Buchanan M R, Boneu B. A comparison of the antithrombotic and haemorrhagic effects of low molecular weight heparin fractions: the influence of the method of preparation.  Thromb Res . 1984;  35 613-625
    >