Zusammenfassung
Entzündungen bekämpfen Pathogene nach Verletzungen und chirurgischen Eingriffen. Durch
die Entzündungsreaktion wird das Muskel- und Fettgewebe katabolisiert, damit Aminosäuren,
Glukose und Fettsäuren für die Immunantwort freigesetzt werden können. Die Leber erhöht
die Proteinsynthese während der akuten Phase und die antioxidativen Abwehrmechanismen
werden durch vermehrte Glutathionsynthese verstärkt. Die Produktion von Oxidantien
schafft pathogenfeindliche Umweltbedingungen. Entzündungshemmende und -fördernde Zytokine
steuern das Ausmaß der Immunantwort. Zur ersten Kategorie gehören die Interleukine
(IL) 1 und 6 und der Tumornekrosefaktor-α (TNF-α), während IL-10 zur zweiten Kategorie
gehört. Neuroendokrine Reaktionen treten auf und Hitzeschockproteine entstehen zur
Dämpfung der Entzündungsreaktion. Entzündungen können sowohl schädigend als auch tödlich
sein. Eine hohe Produktion von IL-1 und TNF-α erhöht die Sterblichkeit bei zerebraler
Malaria, Meningitis und Sepsis. Das Verhältnis der entzündungsfördernden zu den entzündungshemmenden
Proteinen kann ebenfalls einen ungünstigen Verlauf einer Infektion bewirken. Ein hohes
IL-6/IL-10- oder IL-10/TNF-Verhältnis kann eine erhöhte Sterblichkeitsrate bewirken,
während IL-1, IL-6 und TNF-α ebenfalls schädigende Auswirkungen bei Entzündungen und
bei der Entwicklung atheromatöser Beete haben. Der Genotyp ist ein Schlüsselfaktor
bei der Beeinflussung der Zytokinenproduktion und der Stärke der Entzündungsreaktion.
Die Produktion von TNF-α, IL-1β, IL-6 und IL-10 wird stark beeinflusst vom Polymorphismus
einzelner Nukleotide (SNPs) in der Promoterregion der entsprechenden Gene. Zytokin-Gen-Allele
bewirken bei einigen Erkrankungen und Zuständen eine erhöhte Morbidität einschließlich
Sepsis, Diabetes mellitus und kardiovaskuläre Erkrankungen. Studien hinsichtlich der
antientzündlichen Wirkung von n-3-PUFAs deuten darauf hin, dass der individuelle Genotyp
die Wirksamkeit der Immunonährstoffe zur Kontrolle einer Entzündung beeinflussen kann.
Zur Besserung des Zustandes der Patienten ist eine bessere Kenntnis des Gebrauchs
der Nährstoffe wie z. B. der n-3-PUFAs zur Kontrolle entzündlicher Vorgänge erforderlich
und ein besseres Verständnis des Einflusses des individuellen Genotyps auf die Anwort
des Organismus auf solche Immunonährstoffe.
Abstract
The function of inflammation is to combat pathogens following injury and surgery.
During the inflammatory response, muscle and adipose tissue are catabolised to provide
amino acids, glucose and fatty acids, for the immune response. The liver increases
acute phase protein synthesis and anti-oxidant defences are enhanced by increased
glutathione synthesis. Oxidants production creates a hostile environment for pathogens.
The strength of the response is modulated by pro-inflammatory and anti-inflammatory
cytokines. Interleukins (IL) 1 and 6 and tumour necrosis factor-α (TNF-α), fall into
the first category, and IL-10 into the second. Neuroendocrine responses occur, and
heat shock proteins are produced to curtail the inflammatory response. Inflammation
exerts damaging and lethal effects. High production of IL-1 and TNF-α increases mortality
in cerebral malaria, meningitis and sepsis. The ratio of pro- to anti-inflammatory
cytokines also result in an adverse outcome to infection. High IL-6 to IL-10, and
IL-10 to TNF ratios are associated with raised mortality. IL-1, IL-6 and TNF-α also
play a damaging role in inflammatory disease and atheromatous plaque development.
Genotype is a key factor which influences cytokine production and the strength of
the inflammatory response. TNF-α, IL-1β, IL-6 and IL-10 production is strongly influenced
by single nucleotide polymorphisms (SNPs) in the promoter region of the respective
genes. Cytokine gene alleles are linked to increased morbidity in a range of diseases
and conditions including sepsis, diabetes mellitus and cardiovascular disease. Studies
on the anti-inflammatory effect of n-3 PUFAs indicate that individual genotype may
influence the efficacy of immunonutrients in controlling inflammation. To improve
patient outcome a better understanding is needed, of how nutrients, such as n-3 PUFAs
can be used to control the inflammatory process and how individual genotype influences
the response to such immunonutrients.
References
- 1
Grimble R F.
Nutritional modulation of immune function.
Proc Nutr Soc.
2001;
60
389-397
- 2
Arnalich F, Garcia-Palomero E, Lopez J. et al .
Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients
with sepsis.
Infect Immun.
2000;
68
1942-1945
- 3
van Dissel J T, van Langevelde P, Westendorp R GJ. et al .
Anti-inflammatory cytokine profile and mortality in febrile patients.
Lancet.
1998;
351
950-953
- 4 Grimble R F. Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab
Care 2002, in press
- 5
Jacob C O, Fronek Z, Lewis G D. et al .
Heritable major histocompatibility complex II-associated differences in the production
of tumor necrosis factor-alpha: relevance to genetic predisposition to systemic lupus
erythematosus.
Proc Natl Acad Sci.
1990;
87
1233-1237
- 6
Yaqoob P, Newsholme E A, Calder P C.
Comparison of cytokine production in cultures of whole blood and peripheral blood
mononuclear cells.
Cytokine.
1999;
11
600-605
- 7
Pociot F, Briant L, Jongeneel C V. et al .
Association of tumor necrosis factor (TNF) and class II major histocompatibility complex
alleles with the secretion of tumor necrosis factor-alpha and tumour necrosis factor-beta
by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus.
Eur J Immunol.
1993;
23
224-231
- 8
Guash J F. et al .
Five novel intragenic dimorphisms in the human interleukin-1 genes combine to high
informativity.
Cytokine.
1996;
8
589-602
- 9
Heesen M, Bloemeke B, Heussen N, Kunz D.
Can the interleukin-6 response to endotoxin be predicted? Studies of the influence
of a promoter polymorphism of the interleukin-6 gene, gender, the density of the endotoxin
receptor CD14, and inflammatory cytokines.
Crit Care Med.
2002;
30 (3)
664-669
- 10
Searle S, Blackwell J M.
Evidence for functional repeat polymorphisms in the promoter of human NRAMP1 gene
that correlates with autoimmune versus infectious disease susceptibility.
J Med Genet.
1999;
36
295-299
- 11
Cox A, Gonzalez A M, Wilson A G. et al .
Comparative analysis of the genetic association of HLADR3 and tumour necrosis factor
in human IDDM.
Diabetologia.
1994;
37
500-503
- 12
Wilson A G, Gordon C, di Giovine F S. et al .
A genetic association between systemic lupus erythematosus and tumour necrosis factor
alpha.
Eur J Immunol.
1994;
24
191-195
- 13
McGuire W, Hill A VS, Allsopp E M. et al .
Variations in the TNF-alpha promoter region is associated with susceptibility to cerebral
malaria.
Nature.
1994;
371
508-511
- 14
Mira J P, Cariou A, Grall F. et al .
Association of TNF2, a TNF-alpha promoter polymorphisms, with septic shock susceptibility
and mortality.
JAMA.
1999;
282
561-568
- 15
Majetschak M, Flohe S, Obertake U. et al .
Relation of a TNF gene polymorphism to severe sepsis in trauma patients.
Ann Surg.
1999;
230
207-214
- 16
Stuber F, Petersen M, Bokelmann F.
A genomic polymorphisms within the tumor necrosis factor locus influences plasma tumor
necrosis factor-alpha concentrations and outcome of patients with severe sepsis.
Crit Care Med.
1996;
24
381-384
- 17
Kornman K S, Pankow J, Offenbacher S. et al .
Interleukin-1 genotypes and the association between peridontitis and cardiovascular
disease.
J Periodontal Res.
1999;
34
353-357
- 18
Beale R J, Bryg D J, Bihari D J.
Immunonutrition in the critically ill: A systematic review of clinical outcome.
Critical Care Medicine.
1999;
27
2799-2805
- 19
Calder P C.
N-3 polyunsaturated fatty acids and cytokine production in health and disease.
Ann Nutr Metab.
1997;
41
203-234
- 20
Gionotti L, Braga M, Fortis C. et al .
A prospective randomized clinical trial on perioperative feeding with arginine, omega
3 fatty acid, and RNA-enriched enteral diet. Effect on host response and nutrient
status.
JPEN.
1999;
23
314-320
- 21
Braga M, Gionotti L, Radaelli G. et al .
Perioperative immunonutrition in patients undergoing cancer surgery. Results of a
randomized double-blind phase 3 trial.
Arch Surg.
1999;
134
428-433
- 22
Endres S, Ghorbani R, Kelley V E. et al .
The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the
synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.
New Engl J Med.
1989;
320
265-271
- 23
Kelley D S, Taylor P C, Nelson G J. et al .
Docosahexaenoic acid ingestion inhibits natural killer cell activity and production
of inflammatory mediators in healthy men.
Lipids.
1999;
34
317-324
- 24
Yaqoob P, Pala H S, Cortina-Borja M, Newsholme E A, Calder P C.
Encapsulated fish oil enriched in alpha-tocopherol alters plasma phospholipid and
mononuclear cell fatty acid compositions but not mononuclear cell functions.
Eur J Clin Nutr.
2000;
30
399-410
- 25 Grimble R F, Howell W M, O'Reilly G. et al .The ability of fish oil to suppress
tumor necrosis factor-alpha production by peripheral blood mononuclear cells in healthy
men is associated with polymorphisms in genes which influence TNF-alpha production. Am
J Clin Nutr 2002 76 , in press
- 26
Choi S S, Gatanaga M, Granger G A, Gatanaga T.
Prostaglandin-E2 regulation of tumor necrosis factor receptor release in human monocytic THP-1 cells.
Cell Immunol.
1996;
170
178-184
Robert Francis Grimble
Institute of Human Nutrition · School of Medicine · University of Southampton
SO16 7PX · GB