References
<A NAME="RU02402ST-1A">1a</A>
Fukase K. In Glycoscience
Vol.
II:
Fraser-Reid B.
Tatsuta K.
Thiem J.
Springer
Verlag;
Berlin-Heidelberg-New York:
2001.
p.1621
<A NAME="RU02402ST-1B">1b</A>
Seeberger PH.
Haase W.-C.
Chem. Rev.
2000,
100:
4349
<A NAME="RU02402ST-1C">1c</A>
Ito Y.
Manabe S.
Curr. Opin. Chem. Biol.
1998,
6:
701
<A NAME="RU02402ST-1D">1d</A>
Osborn HMI.
Khan TH.
Tetrahedron
1999,
55:
1807
<A NAME="RU02402ST-2A">2a</A>
Danishefsky SJ.
McClure KF.
Randolph JT.
Ruggeri RB.
Science
1993,
260:
1307
<A NAME="RU02402ST-2B">2b</A>
Randolph JT.
McClure KF.
Danishefsky SJ.
J. Am. Chem. Soc.
1995,
117:
5712
<A NAME="RU02402ST-2C">2c</A>
Randolph JT.
Danishefsky SJ.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
1470
<A NAME="RU02402ST-2D">2d</A>
Zheng C.
Seeberger PH.
Danishefsky SJ.
Angew. Chem. Int. Ed.
1998,
37:
786
<A NAME="RU02402ST-2E">2e</A>
Roberge JY.
Beebe XX.
Danishefsky SJ.
Science
1995,
269:
202
<A NAME="RU02402ST-2F">2f</A>
Roberge JY.
Beebe XX.
Danishefsky SJ.
J. Am. Chem. Soc.
1998,
120:
3915
<A NAME="RU02402ST-3A">3a</A>
Doi T.
Sugiki M.
Yamada H.
Takahashi T.
Porco JA.
Tetrahedron Lett.
1999,
40:
2141
<A NAME="RU02402ST-3B">3b</A>
Takahashi T.
Inoue H.
Yamamura Y.
Doi T.
Angew. Chem. Int. Ed.
2001,
40:
3230
<A NAME="RU02402ST-3C">3c</A>
Takahashi T.
Okano A.
Amaya T.
Tanaka H.
Doi T.
Synlett
2002,
911
<A NAME="RU02402ST-4A">4a</A>
Yan L.
Taylor CM.
Goodnow R.
Kahne D.
J. Am.
Chem. Soc.
1994,
116:
6953
<A NAME="RU02402ST-4B">4b</A>
Liang R.
Yan L.
Loebach J.
Ge M.
Uozumi Y.
Sekanina K.
Horan N.
Gildersleeve J.
Thompson C.
Smith A.
Biswas K.
Still WC.
Kahne D.
Science
1996,
274:
1520
<A NAME="RU02402ST-5A">5a</A>
Rademann J.
Schmidt RR.
Tetrahedron
Lett.
1996,
37:
3989
<A NAME="RU02402ST-5B">5b</A>
Rademann J.
Schmidt RR.
J. Org. Chem.
1997,
62:
3650
<A NAME="RU02402ST-5C">5c</A>
Rademann J.
Geyer A.
Schmidt RR.
Angew.
Chem., Int. Ed. Engl.
1988,
37:
1241
<A NAME="RU02402ST-5D">5d</A>
Knerr L.
Schmidt RR.
Eur. J. Org. Chem.
2000,
2803
<A NAME="RU02402ST-5E">5e</A>
Roussel F.
Knerr L.
Grathwohl M.
Schmidt RR.
Org. Lett.
2000,
2:
3043
<A NAME="RU02402ST-5F">5f</A>
Roussel F.
Knerr L.
Schmidt RR.
.
Eur. J. Org. Chem.
2001,
2067
<A NAME="RU02402ST-5G">5g</A>
Roussel F.
Takhi M.
Schmidt RR.
J.
Org. Chem.
2001,
66:
8540
<A NAME="RU02402ST-6A">6a</A>
Shimizu H.
Ito Y.
Kanie O.
Ogawa T.
Bioorg. Med. Chem.
Lett.
1996,
6:
2841
<A NAME="RU02402ST-6B">6b</A>
Manabe S.
Nakahara Y.
Ito Y.
Synlett
2000,
1241
<A NAME="RU02402ST-6C">6c</A>
Manabe S.
Ito Y.
Chem. Pharm. Bull.
2001,
49:
1234
<A NAME="RU02402ST-7">7</A>
Rodebaugh R.
Joshi S.
Fraser-Reid B.
Geysen HM.
J. Org. Chem.
1997,
62:
5660
<A NAME="RU02402ST-8A">8a</A>
Nicolaou KC.
Winssinger N.
Pastor J.
Deroose F.
J.
Am. Chem. Soc.
1997,
119:
449
<A NAME="RU02402ST-8B">8b</A>
Nicolaou KC.
Watanabe N.
Li J.
Pastor J.
Winssinger N.
Angew. Chem.
Int. Ed.
1998,
37:
1559
<A NAME="RU02402ST-9A">9a</A>
Kanemitsu T.
Kanie O.
Wong C.-H.
Angew. Chem. Int. Ed.
1998,
37:
3415
<A NAME="RU02402ST-9B">9b</A>
Kanemitsu T.
Wong C.-H.
Kanie O.
J.
Am. Chem. Soc.
2002,
124:
3591
<A NAME="RU02402ST-10A">10a</A>
Melean LG.
Haase W.-C.
Seeberger PH.
Tetrahedron Lett.
2000,
41:
4329
<A NAME="RU02402ST-10B">10b</A>
Plante OJ.
Palmacci ER.
Seeberger PH.
Science
2001,
291:
1523
<A NAME="RU02402ST-10C">10c</A>
Plante OJ.
Palmacci ER.
Andrade RB.
Seeberger PH.
J.
Am. Chem. Soc.
2001,
123:
9545
<A NAME="RU02402ST-10D">10d</A>
Palmacci ER.
Plante OJ.
Seeberger PH.
Eur. J. Org. Chem.
2002,
595
<A NAME="RU02402ST-11">11</A>
Belogi G.
Zhu T.
Boons G.-J.
Tetrahedron
Lett.
2000,
41:
6969
<A NAME="RU02402ST-12">12</A> Commercially available from Argonaut
Technologies, San Carlos, California (http://www.argotech.com/resins/index.htm).
For investigations of other highly crosslinked macroporous resins,
see:
Hori M.
Gravert DJ.
Wentworth P.
Janda KD.
Bioorganic Med. Chem. Lett.
1998,
8:
2363
<A NAME="RU02402ST-13A">13a</A>
Egusa K.
Kusumoto S.
Fukase K.
Synlett
2001,
777
<A NAME="RU02402ST-13B">13b</A>
Egusa K.
Fukase K.
Nakai Y.
Kusumoto S.
Synlett
2000,
27
<A NAME="RU02402ST-13C">13c</A>
Fukase K.
Nakai Y.
Egusa K.
Porco JAJr.
Kusumoto S.
Synlett
1999,
1074
<A NAME="RU02402ST-14">14</A>
Fukase Y.
Fukase K.
Kusumoto S.
Tetrahedron
Lett.
1999,
40:
1169
<A NAME="RU02402ST-15">15</A>
Izumi M.
Fukase K.
Kusumoto S.
Biosci.
Biotechnol. Biochem.
2002,
66:
211
Sonogashira coupling on solid support:
<A NAME="RU02402ST-16A">16a</A>
Park C.
Burgess K.
J. Comb. Chem.
2001,
3:
257
<A NAME="RU02402ST-16B">16b</A>
Liao Y.
Fathi R.
Reitman M.
Zhang Y.
Yang Z.
Tetrahedron Lett.
2001,
42:
1815
<A NAME="RU02402ST-16C">16c</A>
Pattarawarapan M.
Burgess K.
Angew. Chem.
Int. Ed.
2000,
39:
4299
<A NAME="RU02402ST-16D">16d</A>
Dyatkin AB.
Rivero RA.
Tetrahedron
Lett.
1998,
39:
3647
<A NAME="RU02402ST-16E">16e</A>
Tan DS.
Foley MA.
Shair MD.
Schreiber SL.
J.
Am. Chem. Soc.
1998,
120:
8565
<A NAME="RU02402ST-17">17</A>
Commercially available from Mimotopes
Pty. Ltd. (http://www.mimotopes.com). Solid-phase
oligosaccharide synthesis on SynPhase Crown see ref.
[3b]
and ref.
[7]
<A NAME="RU02402ST-18">18</A>
3: Mp: 98 °C; [α]D
22 = +13
(c 1.10, CHCl3); ESI-Mass (positive) m/z 509.3 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.48-7.24
(15 H, m, PhCH × 3), 5.54 (1 H, s, PhCH), 5.05 (1 H, d, J = 3.0 Hz, H-1), 4.93-4.73
(4 H, m, PhCH2 × 2), 4.51 (1 H, t, J = 9.0 Hz, H-3), 4.30 (2 H,
d, J = 3.0 Hz, OCH2-CCH),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.88-3.86 (1 H, m, H-5), 3.75-3.72
(2 H, m, H-2 and H-4), 3.62 (1 H, d, J = 5.2
Hz, H-6b), 2.47 (1 H, t, J = 3.0
Hz, OCH2-CCH). Found: C, 73.79; H, 6.11%. Calcd
for C30H30O6: C, 74.06; H, 6.21%.
<A NAME="RU02402ST-19">19</A>
5: Mp: 162 °C; [α]D
22 = +37
(c 1.00, CHCl3); ESI-Mass (positive) m/z 629.3 [(M + Na)+]; 1H
NMR (CDCl3) δ = 8.00 (2 H, m, CC6H4CO2Me),
7.50-7.21 (17 H, m, PhCH × 3 + CC6H4CO2Me),
5.56 (1 H, s, PhCH), 5.10 (1 H, d, J = 3.6 Hz,
H-1), 4.93-4.73 (4 H, m, PhCH2 × 2),
4.54 (2 , d, J = 3.0 Hz, OCH2-CCH),
4.26 (1 H, dd, J = 10.3, 4.9
Hz, H-6a), 4.09 (1 H, t, J = 9.1
Hz, H-3), 3.95-3.92 (1 H, m, H-5), 3.92 (3 H, s, CC6H4CO2Me),
3.71 (1 H, d, J = 10.3 Hz, H-6b),
3.65-3.61 (2 H, m, H-2 and H-4). Found: C, 72.92; H, 5.75%. Calcd
for C38H36O8·1/2H2O:
C, 72.48; H, 5.92%.
<A NAME="RU02402ST-20">20</A>
6: ESI-Mass
(negative) m/z 605.2 [(M - H)-]; 1H
NMR (CDCl3) δ = 8.00 (2 H, m, CC6H4CO2H),
7.50-7.21 (17 H, m, PhCH × 3 + CC6H4CO2H),
5.56 (1 H, s, PhCH), 5.10 (1 H, d, J = 3.6
Hz, H-1), 4.93-4.73 (4 H, m, PhCH2 × 2),
4.54 (2 H, d, J = 3.0 Hz, OCH2-CCH),
4.26 (1 H, dd, J = 10.3, 4.9 Hz,
H-6a), 4.09 (1 H, t, J = 9.1
Hz, H-3), 3.95-3.92 (1 H, m, H-5), 3.71 (1 H, d, J = 10.3 Hz, H-6b), 3.65-3.61
(2 H, m, H-2 and H-4). Found: C, 72.24; H, 5.78%. Calcd
for C37H34O8·1/2H2O:
C, 72.18; H, 5.73%. A typical procedure for introduction
of a monosaccharide 6 on solid support. ArgoPore
resin (NH2-LL: 0.28 mmol/g) (100mg, 28.0 µmol) was
placed in a polypropylene tube (Varian) fitted with a filter, and
washed with 5% diisopropylamine in CH2Cl2 and then
CH2Cl2. Compound 6 (38.9
mg, 56.0 µmol), HOBt (18.9 mg, 140 µmol), CH2Cl2 (3.0
mL), and DIC (8.8 µL, 56.0 µmol) were added to
the tube, successively. The reaction mixture was shaken for 3 d
with Rotator RT-50 (Taitech) and filtered. The resin was washed
with CH2Cl2 and the residual amino groups
on the resin were then capped with acetic anhydride (1.0 mL) and
triethylamine (1.0 mL) in CH2Cl2 (2.0 mL)
by shaking for 30 min. The resin was washed successively with DMF,
MeOH, and CH2Cl2.
<A NAME="RU02402ST-21">21</A>
A typical procedure for introduction
of 4-iodobenzoic acid 8 on solid support.
SynPhaseTM resin (NH2-HL: 35.0 µmol) was
placed in a polypropylene tube (Varian) fitted with a filter, and
washed with 5% diisopropylamine in CH2Cl2 and then
CH2Cl2. Compound 8 (17.4
mg, 70.0 µmol), HOBt (23.6 mg, 175 µmol), CH2Cl2 (3.0
mL), and DIC (11.0 µL, 70.0 µmol) were added to
the tube, successively. The reaction mixture was shaken for 3 d
with Rotator RT-50 (Taitech) and filtered. The resin was washed
with CH2Cl2 and the residual amino groups
on the resin were then capped with acetic anhydride (1.0 mL) and
triethylamine (1.0 mL) in CH2Cl2 (2.0 mL)
by shaking for 30 min. The resin was washed successively with DMF,
MeOH, and CH2Cl2.
<A NAME="RU02402ST-22">22</A>
A typical procedure for Sonogashira
coupling of monosaccharide 3 on solid support.
SynPhaseTM resin 9 (NH2:
35.0 µmol) was placed in a polypropylene tube (Varian)
fitted with a filter, and washed with THF. CuI (2.6 mg, 14.0 µmol),
Pd(PPh3)4 (8.1 mg, 7.0 µmol), THF
(2.5 mL), TEA (2.5 mL) and 3 (34.1 mg,
70.0 µmol) were added to the tube, successively. The reaction
mixture was shaken for 24 h with Rotator RT-50 (Taitech) and filtered.
The resin was washed with DMF, MeOH and CH2Cl2 to
give 7.
<A NAME="RU02402ST-23">23</A>
A typical cleavage reaction of alkynylmethyloxy
linker: The ArgoPoreTM resin 7 (100
mg of ArgoPoreTM resin) was shaken with a mixture of
Co2(CO)8 (14.4 mg, 42.0 µmol) in CH2Cl2 (3.0
mL) at room temperature for 1 h. After the reaction mixture was
filtered, the resin was washed with DMF and CH2Cl2 (3.0
mL). The resin was shaken with TFA (0.5 mL) in CH2Cl2 (4.0
mL) and water (0.5 mL) at room temperature for 12 h and then filtered.
The resin was then washed with ethyl acetate. The organic layer
was combined, washed with saturated NaHCO3 solution and
brine, dried over MgSO4, and concentrated in vacuo. The
residue was purified with preparative silica gel TLC (CHCl3-MeOH = 5:1)
to give colorless solid 10. Yield 5.1 mg
(75%). ESI-Mass (positive) m/z 383.1 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.35-7.24
(10 H, m, PhCH × 2), 5.24 (1 H, d, J = 3.63
Hz, H-1), 4.93-4.63 (4 H, m, PhCH2 × 2),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.84-3.73 (2 H, m, H-6b), 3.71-3.62
(1 H, m, H-5), 3.57-3.52 (2 H, m, H-2 and H-4), 2.19 (2
H, d, J = 8.3 Hz, OH × 2).
<A NAME="RU02402ST-24">24</A>
Gisin BF.
Anal.
Chim. Acta
1972,
58:
248
<A NAME="RU02402ST-25">25</A>
The typical procedure for glycosylation
on solid-support: The monosaccharide resin 11 (62% loading)
(100 mg of ArgoPoreTM resin) was washed with dry CH2Cl2 (3
mL). To the resin were added Molecular Sieves 4A beads, 8-12
mesh (200 mg), a solution of a glycosyl trichloroacetimidate 12 (38.9 mg, 56.0 µmol) in dry
CH2Cl2 (3.0 mL), and TMSOTf (8.8 µL,
56.0 µmol), successively. The reaction mixture was shaken
with Rotator RT-50 (Taitech) at room temperature for 3 h. The solution
was removed by filtration and the resin was washed with CH2Cl2 and
ether. After Molecular Sieves 4Å beads were removed by
picking with forceps, the resins were washed with DMF and CH2Cl2.
<A NAME="RU02402ST-26">26</A>
14: ESI-Mass
(positive) m/z 905.4 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.34-7.21
(30 H, m, PhCH × 6), 5.01 (1/2 H, d, J = 3.2 Hz, H-1α),
4.93-4.43 (14 H, m, PhCH2 × 6, H-1′α,
H-1′β, H-1β), 3.84-3.73 (4 H,
m, H-2, H-3, H-3′, and H-4′), 3.76-3.62
(4 H, m, H-4, H-5, H-2′, and H-5′), 3.57-3.37
(4 H, m, H-6, and H-6′), 2.50 (2 H, s, OH × 2).
<A NAME="RU02402ST-27A">27a</A>
DeNinno MP.
Etienne JB.
Duplantier KC.
Tetrahedron
Lett.
1995,
36:
669
<A NAME="RU02402ST-27B">27b</A>
Debenham SD.
Toone EJ.
Tetrahedron:
Asymmetry
2000,
11:
385
<A NAME="RU02402ST-28">28</A>
17: ESI-Mass
(positive) m/z 541.1 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.48-7.24
(15 H, m, PhCO × 2 and PhCH2), 5.94-5.88
(1 H, m, OCH2CH=CH2), 5.75 (1 H,
d, J = 9.6 Hz, H-2), 5.37-5.26
(2 H, m, OCH2CH=CH2), 5.24 (1 H,
t, J = 9.6 Hz, H-3), 5.05 (1
H, d, J = 3.6 Hz, H-1), 4.93-4.73
(4 H, m, PhCH2 and OCH2CH=CH2),
4.26 (1 H, dd, J = 10.4, 5.2 Hz,
H-6a), 3.88-3.86 (1 H, m, H-5), 3.75-3.72 (1 H,
m, H-4), 3.62 (1 H, d, J = 5.2
Hz, H-6b).
<A NAME="RU02402ST-29">29</A>
18: ESI-Mass
(positive) m/z 763.2 [(M + Na)+]; 1H
NMR (CDCl3) δ = 8.00-7.24 [24
H, m, PhCO × 2, PhCH2, and C13H9-CH2-OCO(Fmoc)],
5.94-5.88 (1 H, m, OCH2CH=CH2),
5.75 (1 H, d, J = 9.6 Hz, H-2),
5.56 (1 H, dd, J = 9.6, 7.9
Hz, H-4), 5.37-5.26 (2 H, m, OCH2CH=CH2),
5.24 (1 H, t, J = 9.6 Hz, H-3),
5.05 (1 H, d, J = 3.6 Hz, H-1),
4.93-4.73 (4 H, m, PhCH2 and OCH2CH=CH2),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.94 [1 H, d, J = 10.3
Hz, C13H9-CH2-OCO(Fmoc)],
3.88-3.86 (1 H, m, H-5), 3.75-3.72 (1 H, m, H-4),
3.62 (1 H, d, J = 5.2 Hz, H-6b).
<A NAME="RU02402ST-30">30</A>
20: Mp: 144 °C; [α]D 24 = +134
(c 1.00, CHCl3); ESI-Mass (positive) m/z 895.2 [(M + Na)+]; 1H
NMR (CDCl3) δ = 8.01 (2 H, m, OCH2C6H4CO2CH2-CCH),
7.48-7.25 (17 H, m, PhCH2 × 3, and
OCH2C6H4CO2CH2-CCH),
4.71 (1 H, d, J = 8.6 Hz, H-1),
4.88-4.45 (8 H, m, PhCH2 × 3 and OCH2C6H4CO2H),
4.51 (1 H, t, J = 9.1 Hz, H-3),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.91 (2 H, d, J = 3.0
Hz, OCH2C6H4CO2CH2-CCH),
3.88-3.86 (1 H, m, H-5), 3.72 (1 H, d, J = 10.3
Hz, H-6b), 3.65-3.57 (2 H, m, H-2 and H-4), 2.47 (1 H,
t, J = 3.0 Hz, OCH2C6H4CO2CH2-CCH).
<A NAME="RU02402ST-31">31</A>
A typical procedure for solid-phase
glycosylation using a glycosyl trichloroacetimidate: The 4-O-Fmoc resin 21 (21% loading)
(SynPhaseTM-NH2; 7.7 µmol) was washed
with CH2Cl2 (3.0 mL). To the resin was added
25% piperidine in CH2Cl2 (3.0 mL).
The reaction mixture was shaken with Rotator RT-50 (Taitech) at
room temperature for 30 min. The solution was removed by filtration
and the resin was washed with CH2Cl2, DMF
and MeOH. The resin was then washed with 5% TMSOTf in dry
CH2Cl2 and then dry CH2Cl2 (3
mL). Trichloroacetimidate 19 (19.5 mg,
23.1 µmol), dry CH2Cl2 (3.0 mL),
and TMSOTf (0.3 µL, 1.5 µmol) were added. The
reaction mixture was shaken with Rotator RT-50 (Taitech) at room
temperature for 30 min to give resin-linked disaccharide 32.
Typical procedure of cleavage
from solid support by alkali. SynPhase resin linked with disaccharide
via alkynyl ester linker was shaken with a mixture of 28% CH3ONa
in MeOH (1.0 mL), MeOH (1.0 mL) and CH2Cl2 (2.0
mL) at room temperature for 12 h. After the reaction mixture was
filtered, EtOAc and 0.1 N aqueous HCl were added to the filtrate. The
organic layer was combined, washed with saturated NaHCO3 solution
and brine, dried over MgSO4, and concentrated in vacuo.
The residue was purified with preparative silica gel TLC (CHCl3-MeOH = 5:1)
to give the desired compound.
34:
Yield 7.2 mg (quant.). ESI-Mass (positive) m/z 945.5 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.84-7.21
(19 H, m, PhCH2 × 3 and OCH2C6H4CO2Me),
4.83-4.43 (10 H, m, PhCH2 × 3, OCH2C6H4CO2Me,
H-1β, H-1′β, and H-1′′β), 3.93
(3 H, s, OCH2C6H4CO2Me),
3.84-3.60 (12H, m, H-2, H-3, H-4, H-5, H-2′, H-3′,
H-4′, H-5′, H-2′′, H-3′′,
H-4′′ and H-5′), 3.57-3.37 (4
H, m, H-6, H-6′, and H-6′′), 2.50 (4
H, s, OH × 7).
<A NAME="RU02402ST-32">32</A>
Fukase Y.
Zhang S.-Q.
Iseki K.
Oikawa M.
Fukase K.
Kusumoto S.
Synlett
2001,
1693