Abstract
The estrogen receptor (ER) is composed of six major functional domains - the A/B domain as the activation function 1 domain, domain C as the DNA-binding domain, domain D as a hinge domain, and domain E/F as the ligand-dependent transcriptional domains. A novel protein (designated as SRB-RGS) that interacted with domains C and D of ERα (ERα C/D) repressed the transcriptional activity of ERα. In this study, we have examined whether ERα C/D releases transcriptional suppression of ERα by intrinsic SRB-RGS. The expression vector of ERα C/D was transfected to the human cancer cell, KPL-1, which expressed the intrinsic ER. Unexpectedly, transcriptional suppression of ER by ERα C/D was observed. COS-7 cells, which have no intrinsic ER, showed a similar suppression of ERα by co-transfection of ERα and ERα C/D. The DNA-binding and the estrogen-binding activities of ERα decreased on co-transfection of ERα C/D, suggesting a decrease in the receptor protein itself. It is likely that the degradation of ER by co-transfection caused the transcriptional suppression of the ER.
Key words
Dominant Negative - DNA-Binding Domain - SRB-RGS - Degradation - Breast Cancer Cell - COS-7 Cell - Gel-Shift Assay
References
-
1
Evans R M.
The steroid and thyroid hormone receptor superfamily.
Science.
1988;
240
889-895
-
2
Freedman L.
Increasing the complexity of coactivation in nuclear receptor signaling.
Cell.
1999;
97
5-8
-
3
Muramatsu M, Inoue S.
Breakthroughs and views. Estrogen receptors: How do they control reproductive and nonreproductive functions?.
Biochem Biophys Res Commun.
2000;
270
1-10
-
4
Ikeda M, Hirokawa M, Satani N, Kinoshita T, Watanabe Y, Inoue H, Tone S, Ishikawa T, Minatogawa Y.
Molecular cloning and characterization of a steroid receptor-binding regulator of G-protein signalling cDNA.
Gene.
2001;
273
207-214
-
5
Nakatani Y.
Histone acetylases - versatile players.
Genes Cells.
2001;
6
79-96
-
6
Ince B A, Zhuang Y, Wrenn C K, Shapiro D J, Katzenellebogen B S.
Powerful dominant negative mutants of the human estrogen receptor.
J Biol Chem.
1993;
268
14 026-14 032
-
7
Karl M, Lamberts S W, Koper J W, Katz D A, Huizenga N E, Kino T, Haddad B R, Hughes M R.
Cushing disease preceded by generalized glucocorticoid resistance:clinical consequences of a novel, dominant negative glucocorticoid receptor mutant.
Proc Assoc Am Physicians.
1996;
108
296-307
-
8
Palvimo J J, Kallio P J, Ikonen T, Mehto M, Janne O A.
Dominant negative regulation of trans-activation by the rat androgen receptor: Roles of the N-terminal domain and heterodimer formation.
Mol Endocrinol.
1993;
7
1399-1407
-
9
Tagami T, James J L.
Nuclear corepressors enhance the dominant negative activity of mutant receptors that cause resistance to thyroid hormone.
Endocrinology.
1998;
139
640-650
-
10
Schodin D J, Zhuang Y, Shapiro D J, Katzenellebogen B S.
Analysis of mechanisms that determine dominant negative estrogen receptor effectiveness.
J Biol Chem.
1995;
270
31 163-31 171
-
11
Wang H, Zeng X, Khan S A.
Estrogen receptor variants ERΔ5 and ERΔ7 down-regulate wild-type estrogen receptor activity.
Mol Cell Endocrinol.
1999;
156
159-168
-
12
Kalderon D, Roberts B L, Richardson W D, Smith A E.
A short amino acid sequence able to specify nuclear location.
Cell.
1984;
39
499-509
-
13
Wu Y, Tam S-P, Davies P L.
A modified CAT expression vector with convenient cloning sites.
Nucleic Acid Res.
1990;
18
1919
-
14
Ikeda M, Ogata F, Curtis S W, Lubahn D B, French F S, Wilson E, Korach K S.
Characterization of the DNA-binding domain of the mouse uterine estrogen receptor using site-directed polyclonal antibodies.
J Biol Chem.
1993;
268
10 296-10 302
-
15
Ikeda M, Tsuji N, Kikukawa K, Asahara Y, Nakashima A, Minatogawa Y.
DNA-binding properties of the overexpressed recombinant estrogen receptor α.
Biochem Mol Biol Int.
1998;
45
673-680
-
16
Schwabe J W, Chapman L, Finch J T, Rhodes D.
The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements.
Cell.
1993;
75
567-578
-
17
Fawell S E, Lees J A, White R, Parker M G.
Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor.
Cell.
1990;
60
953-962
-
18
Sica V, Weisz A, Petrillo A, Armetta I, Puca G A.
Assay of total estradiol in tissue homogenate and tissue fractions by exchange with sodium thiocyanate at low temperature.
Biochem.
1981;
20
686-693
-
19
Wang H, Peters G, Zeng X, Tang M, Ip W, Khan S.
Yeast two-hybrid system demonstrates that estrogen receptor dimerization is ligand-dependent in vitro.
J Biol Chem.
1995;
270
23 322-23 329
-
20
Abbondanza C, Falco A, Nigro V, Medici N, Armetta I, Molinari A M, Moncharmont B, Puca G A.
Characterization and epitope mapping of a new panel of monoclonal antibodies to estradiol receptor.
Steroids.
1993;
58
4-12
-
21
Greene G L, Sobel N B, King W J, Jensen E V.
Immunochemical studies of estrogen receptors.
J Steroid Biochem.
1984;
20
51-56
-
22
Pratt W B, Toft D O.
Steroids receptor interactions with heat shock protein and immunophilin chaperones.
Endocr Rev.
1977;
18
306-360
-
23
Caplan A J.
Hsp's secrets unfold: New insights from structural studies.
Trends Cell Biol.
1999;
9
262-268
-
24
Chambraud B, Berry M, Redeuilh G, Chambon P, Baulieu E-M.
Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes.
J Biol Chem.
1990;
265
20 686-20 691
Dr. M. Ikeda
Department of Biochemistry · Kawasaki Medical School ·
577 Matsushima · Kurashiki · Okayama 701-0192 · Japan ·
Telefon: + 81 (86) 462 1111 ·
Fax: + 81 (86) 462 1199
eMail: ikeda@bcc.kawasaki-m.ac.jp