Minim Invasive Neurosurg 2002; 45(2): 65-71
DOI: 10.1055/s-2002-32492
Original Article
Georg Thieme Verlag Stuttgart · New York

Ventricular Failure as a Cause of Unsuccessful Endoscopic Third Ventriculostomy

W.  R.  Murshid1
  • 1Division of Neurosurgery, Department of Surgery, King Khalid University Hospital, Riyadh, Saudi Arabia
Further Information

Publication History

Publication Date:
25 June 2002 (online)

Abstract

Introduction: In spite of extensive studies on cerebrospinal fluid (CSF) dynamics, the mechanism of its circulation is still obscure. The aim of this study is to evaluate the effect of an insult to the brain tissue on the success or failure of an endoscopic procedure. Methods: During the period from May 1995 to December 1998 we studied 21 children, ages from 2 to 48 months (mean 15 months) with non-communicating hydrocephalus. The intracranial pressure was measured at the time of endoscopic surgery. The follow-up period was from 2 - 5 years. They were divided into 2 groups. Group I were 8 patients with no history of brain insult. Group II (13 cases) had a previous brain insult (infective and/or vascular). Endoscopic third ventriculostomy (ETV) was done in 17 cases; 5 in Group I and 12 in Group II. Fenestration of cyst/s was done in all of Group I and in 9 cases of Group II. Failure was considered whenever shunt implantation was required. Results: The mean intracranial pressure in Group I was 13.0 mmHg as compared to 9.7 mmHg in Group II (p = 0.015). The failure rate of the endoscopic procedure/s was 25 % and 54 % in Groups I and II, respectively. Discussion: The success of ETV and/or fenestration of cyst/s depends on a sufficient pressure gradient. The pressure gradient is generated by a normal or compensated ventricular function. Conclusion: Brain tissue damage can result in ventricular failure. The quality of ventricular wall function has a significant role on the success of ETV.

References

  • 1 Sainte Rose C. Hydrocephalus in childhood. In: Youmans JR (Eds): Neurological Surgery. Philadelphia, London, Toronto: W.B. Saunders Company. Volume 2 1996: pp 890-926
  • 2 Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståihlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging: The Monro-Kellie doctrine revisited.  Neuroradiology. 1992;  34 370-380
  • 3 Caemaert J, Abdullah J, Calliauw L, Carton D, Dhooge C, Van Coster R. Endoscopic treatment of suprasellar arachoid cysts.  Acta Neurochir (Wien). 1992;  119 68-73
  • 4 Santamarta D, Aguas J, Ferrer E. The natural history of arachnoid cysts: Endoscopic and cine-mode MRI evidence of a slit-valve mechanism.  Minim Invas Neurosurg. 1995;  38 133-137
  • 5 El-Dawlatly A A, Murshid W, El-Khwsky F. Endoscopic third ventriculostomy: A study of intracranial pressure vs. haemodynamic changes.  Minim Invas Neurosurg. 1999;  42 198-200
  • 6 Murshid W R. Endoscopic third ventriculostomy: Towards more indications for the treatment of non-communicating hydrocephalus.  Minim Invas Neurosurg. 2000;  43 75-82
  • 7 O'Connell J EA. Vascular factor in intracranial pressure and maintenance of cerebrospinal fluid circulation.  Brain. 1943;  66 204-228
  • 8 Bering E A. Circulation the cerebro-spinal fluid: Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement.  J Neurosurg. 1962;  19 405-413
  • 9 Du Boulay G. Further investigation of the pulsatile movements in the cerebrospinal fluid pathways.  Acta Radiol Diagn. 1972;  13 496-523
  • 10 Monro A. Observations on the structure and functions of the nervous system. Edinburgh: Creech and Johnson 1783. (as quoted from reference 2)
  • 11 Kellie G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain.  Trans Med-Chir Soc Edin. 1824;  1 84
  • 12 Weed L H. Some limitation of the Monro-Kellie hypothesis.  Arch Surg. 1929;  18 1049-1068
  • 13 Fukuhara T, Vorster S J, Luciano M G. Risk factors for failure of endoscopic third ventriculostomy for obstructive hydrocephalus.  Neurosurg. 2000;  46 1100-1111
  • 14 Kalsbeck J E, De Sousa A L, Kleiman M B, Goodman J M, Franken E A. Compartmentalization of the cerebral ventricles as a sequela of neonatal meningitis.  J Neurosurg. 1980;  52 547-552
  • 15 Schultz P, Leeds N E. Intraventricular septations complicating neonatal meningitis.  J Neurosurg. 1973;  38 620-626
  • 16 Hopf N J, Grunert P, Fries G, Resch K D, Perneczky A. Endoscopic third ventriculostomy: outcome analysis of 100 consecutive procedures.  Neurosurg. 1999;  44 795-804
  • 17 Langfitt T W, Weinstein J D, Kassell N F, Gagliardi L J, Shapiro H M. Compression of cerebral vessels by intracranial hypertension. I. Dural sinus pressures.  Acta Neurochir (Wien). 1966;  15 (3) 212-222
  • 18 Sainte-Rose C, La Combe J, Pierre-Kahn A, Renier D, Hirsch J-F. Intracranial venous sinus hypertension: Cause or consequence of hydrocephalus in infants?.  J Neurosurg. 1984;  60 727-736
  • 19 Johnston I, Paterson A. Benign intracranial hypertension. II. CSF pressure and circulation.  Brain. 1974;  97 301-312
  • 20 Janny P, Chazal J, Colnet G, Irthum B, Georget A M. Benign intracranial hypertension and disorders of CSF absorption.  Surg Neurol. 1981;  15 168-174
  • 21 Janny P, Chazal J, Colnet G, Devoize J L, Barretto L C. L'hypertension intracrânienne bénigne. Etude clinique, physiopathologique et nosographique.  Neurochirurgie. 1981;  27 79-88
  • 22 Ray B S, Dunbar H S. Thrombosis of the dural venous sinuses as a cause of “pseudotumor cerebri”.  Ann Surg. 1951;  134 376-386
  • 23 Grant D N. Benign intracranial hypertension. A review of 79 cases in infancy and childhood.  Arch Dis Child. 1971;  46 651-655
  • 24 Kinal M E. Hydrocephalus and the dural venous sinuses.  J Neurosurg. 1962;  19 195-201
  • 25 de Lange S A, de Vlieger M. Hydrocephalus associated with raised venous pressure.  Dev Med Child Neurol. 1970;  12 (Suppl 22) 28-32
  • 26 Cronqvist S, Granholm L, Lundström N R. Hydrocephalus and congestive heart failure caused by intracranial arteriovenous malformation in infants.  J Neurosurg. 1972;  36 249-254
  • 27 Rosman N P, Shands K N. Hydrocephalus caused by increased intracranial venous pressure: a clinico-pathological study.  Ann Neurol. 1978;  3 445-450
  • 28 Wu X R, Swaiman K F. Reversible hydrocephalus caused by bilateral jugular vein catheterization.  Brain Dev. 1982;  4 397-400
  • 29 Hakim S, Venegas J G, Burton J D. The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: Mechanical interpretation and mathematical model.  Surg Neurol. 1976;  5 187-210
  • 30 Reddy K, Fewer H D, West M, Hill N C. Slit ventricle syndrome with aqueductal stenosis: Third ventriculostomy as a definitive treatment.  Neurosurg. 1988;  23 756-759
  • 31 Baskin J J, Manwaring K H, Rekate H L. Ventricular shunt removal: The ultimate treatment for the slit ventricle syndrome.  J Neurosurg. 1998;  88 478-484
  • 32 Bradley W G, Whittemore A R, Watanabe A S, Davis S J, Teresi L M, Homyak M. Association of deep white matter infraction with chronic communicating hydrocephalus: Implications regarding the possible origin of normal pressure hydrocephalus.  AJNR. 1991;  12 31-39
  • 33 Mitchell P, Mathew B. Third ventriculostomy in normal pressure hydrocephalus.  Br J Neurosurg. 1999;  13 382-385
  • 34 Meier U, Zeilinger F S, Schönherr B. Endoscopic ventriculostomy versus shunt operation in normal pressure hydrocephalus: Diagnosis and indication.  Minim Invas Neurosurg. 2000;  43 87-90

Dr. W. R. Murshid, FRCSEd (SN), FACS, Associate Professor and Consultant Neurosurgeon

Division of Neurosurgery · Department of Surgery (37) · King Khalid University Hospital

P.O. Box 7805

Riyadh 11472 · Kingdom of Saudi Arabia

Phone: +966-1-467-0011

Fax: +966-1-467-9493

Email: wmurshid@ksu.edu.sa

    >