References and Notes
<A NAME="RG06702ST-1A">1a</A>
Boger DL.
Weinreb SN.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic Press;
San Diego:
1987.
<A NAME="RG06702ST-1B">1b</A>
Tietze LF.
Kettschau G.
Top. Curr. Chem.
1997,
189:
1
For reviews, see:
<A NAME="RG06702ST-2A">2a</A>
Rappoport Z.
The Chemistry of Enamines in The Chemistry of Functional Groups
John Wiley and Sons;
New York:
1994.
<A NAME="RG06702ST-2B">2b</A>
Whitesell JK.
Whitesell MA.
Synthesis
1983,
517
<A NAME="RG06702ST-2C">2c</A>
Hickmott PW.
Tetrahedron
1982,
38:
1975
<A NAME="RG06702ST-2D">2d</A>
Hickmott PW.
Tetrahedron
1982,
38:
3363
<A NAME="RG06702ST-2E">2e</A>
Lenz GR.
Synthesis
1978,
489
<A NAME="RG06702ST-2F">2f</A> For reviews on cycloaddition using dienamides, see:
Campbell AL.
Lenz GR.
Synthesis
1987,
421
For recent studies involving enamides, see:
<A NAME="RG06702ST-3A">3a</A>
Fuchs JR.
Funk RL.
Org. Lett.
2001,
3:
3349
<A NAME="RG06702ST-3B">3b</A>
Maeng J.-H.
Funk RL.
Org. Lett.
2001,
3:
1125
<A NAME="RG06702ST-3C">3c</A>
Abbiati G.
Clerici F.
Gelmi ML.
Gambini A.
Pilati T.
J. Org. Chem.
2001,
66:
6299
<A NAME="RG06702ST-3D">3d</A>
Bach T.
Schröder J.
Brandl T.
Hecht J.
Harms K.
Tetrahedron
1998,
54:
4507
For recent examples of synthesis and cycloadditions of dienamides, see:
<A NAME="RG06702ST-4A">4a</A>
Gauvry N.
Huet F.
J. Org. Chem.
2001,
66:
583
<A NAME="RG06702ST-4B">4b</A>
von Wangelin AJ.
Neumann H.
Gordes D.
Spannenberg A.
Beller M.
Org. Lett.
2001,
3:
2895
<A NAME="RG06702ST-4C">4c</A>
Ha JD.
Kang CH.
Belmore KA.
Cha JK.
J. Org. Chem.
1998,
63:
3810 ; and references 1-7 cited therein.
<A NAME="RG06702ST-4D">4d</A> For epoxydation of enamides, see:
Adam W.
Reinhardt D.
Reissig H.-U.
Paulini K.
Tetrahedron
1995,
51:
12257 ; and references cited therein
<A NAME="RG06702ST-4E">4e</A> Also see:
Koseki Y.
Kusano S.
Ichi D.
Yoshida K.
Nagasaka T.
Tetrahedron
2000,
56:
8855
The first examples of inverse-electron demand [4+2] heterocycloadditions of allenamides
and allenimides (including chiral ones) were recently described:
<A NAME="RG06702ST-5A">5a</A>
Wei L.-L.
Xiong H.
Douglas CJ.
Hsung RP.
Tetrahedron Lett.
1999,
40:
6903
<A NAME="RG06702ST-5B">5b</A>
Wei L.-L.
Hsung RP.
Xiong H.
Mulder JA.
Nkansah NT.
Org. Lett.
1999,
1:
2145
<A NAME="RG06702ST-6">6</A>
Vani PV.
Chida AS.
Srinivasan R.
Chandrasekharam M.
Singh AK.
Synth. Commun.
2001,
31:
2043
<A NAME="RG06702ST-7">7</A>
Walles WE,
Tousignant WF, and
Houtman T. inventors; US Patent Appl. 2891058.
<A NAME="RG06702ST-8">8</A>
Tulshian DB.
Tsang R.
Fraser-Reid B.
J. Org. Chem.
1984,
49:
2347
<A NAME="RG06702ST-9">9</A>
Dujardin G.
Rossignol S.
Brown E.
Tetrahedron Lett.
1995,
36:
1653
<A NAME="RG06702ST-10">10</A>
Akiba T.
Tamura O.
Hashimoto M.
Kobayashi Y.
Katoh T.
Nakatani K.
Kamada M.
Hayakawa I.
Terashima S.
Tetrahedron
1994,
50:
3905
<A NAME="RG06702ST-11">11</A>
Gassman PG.
Burns SJ.
Pfister KB.
J. Org. Chem.
1993,
58:
1449
<A NAME="RG06702ST-12">12</A>
Bach T.
Brummerhop H.
J. Prakt. Chem.
1999,
341:
410
<A NAME="RG06702ST-13">13</A>
Preparation of N-vinyl-2-oxazolidinone 1: A mixture of oxazolidinone (2.05 g, 23.4 mmol), acetaldehyde diethyl acetal (33
mL, 0.23 mol) and d,l-camphorsulfonic acid (0.27 g, 1.17 mmol) was heated for 15 h at 55 °C. After cooling,
aq. NaHCO3 (15 mL) was added and the reaction mixture extracted with Et2O (3 × 8 mL). The organic layer was washed with brine and dried over MgSO4. Removal of solvent yielded crude N,O-acetal 2 (3.72 g, quantitative) used without further purification. To a cooled solution (0
°C) of crude N,O-acetal 2 (3.72 g, 23.4 mmol) in anhydrous CH2Cl2 under nitrogen (22 mL) were dropwise added distilled NEt3 (4.9 mL, 37.7 mmol) and, trimethylsilyl triflate (5.5 mL, 30.4 mmol). After slow
return to r.t. and stirring for 16 h, the mixture was filtered on basic alumina. Removal
of solvent and purification by filtration (silica gel 4/1; ether) yielded 1 (1.95 g, 73%) as a pale yellow oil;Rf = 0.37 (Cyclohexane-AcOEt, 1:1); IR(film): 1753 (C=O), 1633 (C=C), 1248, 1080 (C-O)
cm-1; 1H NMR (400 MHz, CDCl3), δ 3.72 (t, 2 H, J
4
′
-5
′ = 8.2 Hz, H-4′), 4.30 (dd, 1 H, J
2B-1 = 15.8 Hz, J
AB = 1.0 Hz, H-2B), 4.44 (dd, 1 H, J
2A-1 = 8.9 Hz, J
AB = 1.0 Hz, H-2A), 4.47 (t, 2 H, J
5
′
-4
′ = 8.2 Hz, H-5′), 6.89 (dd, 1 H, J
1-2B = 15.8 Hz, J
1-2A = 8.9 Hz, H-1); 13C NMR(100 MHz, CDCl3), δ 41.7 (C-4′), 62.0 (C-5′), 93.3 (C-2), 129.7 (C-1), 155.2 (C-2′).
<A NAME="RG06702ST-14">14</A>
General preparation of hetero-adduct 4a-f with Eu(fod)
3
: A solution of heterodiene 3 (0.5 mmol), N-vinyl-2-oxazol-idinone 1 (0.5 mmol) and Eu(fod)3 (0.025 mmol) in cyclo-hexane (5 mL) was refluxed under nitrogen for the time referred
to Table
[2]
. After removal of solvent the crude product was chromatographed (silica gel 40/1)
using cyclohexane-AcOEt, 70:30 to 50:50. Compounds 4a-f obtained with yields referred to Table
[2]
are new and analytical data of one representative example is included in ref. 15.
<A NAME="RG06702ST-15">15</A>
Analytical data of hetero-adduct 4a cis: white crystal, mp 59-61 °C(ether); Rf = 0.23 (cyclohexane-AcOEt, 1:1); 1H NMR (400 MHz, CDCl3), δ 1.94 (dt, 1 H, J
AB = 12.8 Hz,
J
2ax-3 = J
2ax-1 = 11.3 Hz, H-2ax), 2.26 (ddt, 1 H, J
AB = 12.8 Hz, J
2eq-3 = 6.4 Hz, J
2eq-1 = J
2eq-4 = 2 Hz, H-2eq), 3.57 (dt, 1 H, JAB = J
4
′
B-5
′
B = 8.9 Hz, J
4
′
B-5
′
A = 6.2 Hz, H-4′B), 3.81 (s, 3 H, OCH3), 3.84 (m, 1 H, H-4′A), 3.89 (ddd, 1 H, J
3-2ax = 11.3 Hz, J
3-2eq = 6.4 Hz, J
3-4 = 2.5 Hz, H-3), 4.38 (dt, 1 H, J
AB = J
5
′
B-4
′
B = 8.9 Hz, J
5
′
B-4
′
A = 6.9 Hz, H-5′B), 4.46 (dt, 1 H, JAB = J
5
′
A-4
′
A = 8.9 Hz, J
5
′
A-4
′
B = 6.2 Hz, H-5′A), 5.76 (dd, 1 H, J
1-2ax = 11.3 Hz, J
1-2eq = 2 Hz, H-1), 6.17 (t, 1 H, J
4-3 = J
4-2eq = 2 Hz, H-4), 7.22 (d, 2 H, J = 6.9 Hz, H
o
), 7.29 (t, 1 H, J = 7.4 Hz, H
p
), 7.35 (t, 2 H, J = 7.4 Hz, H
m
); 13C NMR (100 MHz, CDCl3), δ 35.5 (C-2), 39.5 (C-3), 40.1 (C-4′), 52.7 (OCH3), 62.9 (C-5′), 81.3 (C-1), 114.6 (C-4), 127.5 (C
o
), 127.7 (C
p
), 129.3 (C
m
), 142.5 (C
n
), 144.4 (C-5), 157.8 (C-2′), 163.0 (CO2). IR(film): 1758 (C=O), 1643 (C=C), 1134, 1248, 1288 (C-O) cm-1; SM C16H17NO5 [M]+· 303 (1.8%); HRMS (EI) calcd for C16H15NO4 [M-H2O]+ 285.1001, found 285.1008.
<A NAME="RG06702ST-16">16</A>
Preparation of hetero-adduct 4a trans with SnCl
4
: To a cooled solution (-78 °C) of heterodiene 3a (95 mg, 0.5 mmol) and N-vinyl-2-oxazolidinone 1 (57 mg, 0.5 mmol) in anhydrous CH2Cl2 (5 mL) under nitrogen was added dropwise SnCl4 1 M in CH2Cl2 (0.25 mL, 0.25 mmol). After stirring (5 min) the mixture was quenched with sat. aq.
NaHCO3 (5 mL). After returning to r.t. and extraction with CH2Cl2 (2 × 5 mL), the resulting organic layer was dried (MgSO4). Removal of solvent and purification by chromatography (silica gel 40/1; cyclohexane-AcOEt,
70:30 to 50:50) yielded 4a (143 mg, 94%) as a mixture cis/trans, 68:32. 4a trans was thus isolated as a white solid; Rf = 0.16 (cyclohexane-AcOEt, 1:1); 1H NMR (400 MHz, CDCl3), δ 2.03 (dq, 1 H, J
AB = 13.3 Hz, J2eq-1 = J2eq-3 =
J
2eq-4 = 2 Hz, H-2eq), 2.33 (ddd, 1 H, J
AB = 13.3 Hz, J
2ax-1 = 11.3 Hz, J
2ax-3 = 6.6 Hz, H-2ax), 3.61 (dt, 1 H, J
AB = J
4
′
B-5
′
B = 8.6 Hz, J
4
′
B-5
′
A = 5.9 Hz, H-4′B), 3.81 (m, 2 H, H-3 + H-4′A), 3.83 (s, 3 H, OCH3), 4.34 (q, 1 H, JAB = J
5
′
B-4
′
B = J
5
′
B-4
′
A = 8.5 Hz, H-5′B), 4.42 (dt, 1 H, JAB = J
5
′
A-4
′
A = 8.9 Hz, J
5
′
A-4
′
B = 5.9 Hz, H-5′A), 5.43 (dd, 1 H, J
1-2ax = 11.3 Hz, J
1-2eq = 2.2 Hz,
H-1), 6.25 (dd, 1 H, J
4-3 = 5.3 Hz, J
4-2eq = 1.5 Hz, H-4), 7.23 (d, 2 H, J = 6.9 Hz, H
o
), 7.27 (t, 1 H, J = 5.9 Hz, H
p
), 7.35 (t, 2 H, J = 7.4 Hz, H
m
); 13C NMR (100 MHz, CDCl3), δ 33.8 (C-2), 37.1 (C-3), 40.5 (C-4′), 52.7 (OCH3), 62.8 (C-5′), 77.7 (C-1), 111.9 (C-4), 127.6 (C
p
), 128.4 C
o
), 129.3 (C
m
), 143.2 (C
n
), 144.7 (C-5), 157.8 (C-2′), 163.1 (CO2).
<A NAME="RG06702ST-17">17</A> A similar gap of reactivity was previously observed between 4a and 4d-e towards ketone enol ethers as the dienophiles:
Martel A.
Leconte S.
Dujardin G.
Brown E.
Maisonneuve V.
Retoux R.
Eur. J. Org. Chem.
2002,
3:
514
<A NAME="RG06702ST-18A">18a</A>
Ichikawa Y.
Nishiyama T.
Isobe M.
Synlett
2000,
1253
<A NAME="RG06702ST-18B">18b</A>
Wolfe S.
Whangbo M.
Mitchell DJ.
Carbohydr. Res.
1979,
69:
1
<A NAME="RG06702ST-19A">19a</A>
Gizecki P.
Dhal R.
Toupet L.
Dujardin G.
Org. Lett.
2000,
2:
585
<A NAME="RG06702ST-19B">19b</A>
Gizecki P.
Ph.D. Thesis
CNRS-Université du Maine;
Le Mans:
2001.
<A NAME="RG06702ST-19C">19c</A>
Gizecki, P.; Dhal, R.; Dujardin, G.; submitted.
<A NAME="RG06702ST-20">20</A>
Selected data of 9: 1H NMR (400 MHz, CDCl3), δ 6.87 (1 H, dd, J = 14.3 and 1.2 Hz), 5.13 (1 H, dd, J = 14.3 and 6.4 Hz).IR(film): 3309 (NH); 1747 (C=O), 1670 (C=C), 1637 (C=O) cm-1.