Abstract
The synthesis of 5′-O -DMTr-3′-O -phosphoramidite-C8-arylamine-dG adducts 11 and 12 is described. The compounds are potential building blocks for the automated synthesis
of site-specifically modified oligonucleotides. The C8-adducts were synthesized by
a palladium-catalyzed cross-coupling reaction.
Key words
Pd-cross coupling - amination - nucleoside adducts - protecting groups - phosphoramidites
References
<A NAME="RG03402ST-1">1 </A>
Garner RC.
Mutat. Res.
1998,
402:
67
<A NAME="RG03402ST-2">2 </A>
Neumann HG.
J. Cancer Res. Clin. Oncol.
1986,
112:
100
<A NAME="RG03402ST-3">3 </A>
Beland FA.
Kadlubar FF.
Environ. Health Perspect.
1985,
62:
19
<A NAME="RG03402ST-4">4 </A>
Thorgeirsson SS. In
Biochemical Basis of Chemical Carcinogenesis
Greim H.
Hung R.
Marquardt H.
Oesch F.
Raven Press;
New York:
1984.
p.47
<A NAME="RG03402ST-5A">5a </A>
Abuaf P.
Hingerty BE.
Broyde S.
Grunberger D.
Chem. Res. Toxicol.
1995,
8:
369
<A NAME="RG03402ST-5B">5b </A>
Shibutani S.
Suzuki N.
Grollman A.
Biochemistry
1998,
37:
12034
<A NAME="RG03402ST-5C">5c </A>
Shibutani S.
Fernandes A.
Suzuki N.
Zhou L.
Johnson F.
Grollman AP.
J. Biol. Chem.
1999,
274:
27433
<A NAME="RG03402ST-6A">6a </A>
Zhou Y.
Romano LJ.
Biochemistry
1993,
32:
14043
<A NAME="RG03402ST-6B">6b </A>
Shibutani S.
Gentles RG.
Iden CR.
Johnson F.
J. Am Chem. Soc.
1990,
112:
5667
<A NAME="RG03402ST-6C">6c </A>
Patel DJ.
Mao B.
Gu Z.
Hingerty BE.
Gorin A.
Basu AK.
Broyde S.
Chem. Res. Toxicol.
1998,
11:
391
<A NAME="RG03402ST-6D">6d </A>
Wu X.
Shapiro R.
Broyde S.
Chem. Res. Toxicol.
1999,
12:
895
<A NAME="RG03402ST-6E">6e </A>
Cho BP.
Zhou L.
Biochemistry
1999,
38:
7572
<A NAME="RG03402ST-7A">7a </A>
Meier C.
Boche G.
Carcinogenesis
1991,
12:
1633
<A NAME="RG03402ST-7B">7b </A>
Meier C.
Boche G.
Tetrahedron Lett.
1990,
31:
1693
<A NAME="RG03402ST-8A">8a </A>
Meier C.
Boche G.
Tetrahedron Lett.
1990,
31:
1685
<A NAME="RG03402ST-8B">8b </A>
Meier C.
Boche G.
Chem. Ber.
1990,
123:
1691
<A NAME="RG03402ST-9">9 </A>
Famulok M.
Boche G.
Angew. Chem., Int. Ed. Engl.
1989,
28:
468 ; Angew. Chem . 1989 , 101 , 470
<A NAME="RG03402ST-10">10 </A>
Riehl, H.; Meier, C. 2000 , unpublished results .
<A NAME="RG03402ST-11A">11a </A>
Wolfe JP.
Wagaw S.
Marcoux J.-F.
Buchwald SL.
Acc. Chem. Res.
1998,
31:
805
<A NAME="RG03402ST-11B">11b </A>
Hartwig JF.
Acc. Chem. Res.
1998,
31:
852
<A NAME="RG03402ST-12A">12a </A>
Lakshman MK.
Hilmer JH.
Martin JQ.
Keeler JC.
Dinh YQV.
Ngassa FN.
Russon LM.
J. Am. Chem. Soc.
2001,
123:
7779
<A NAME="RG03402ST-12B">12b </A> N6 adducts have also been synthesized by direct nucleophilic substitution:
Véliz EA.
Beal PA.
J. Org. Chem.
2001,
66:
8592
<A NAME="RG03402ST-13A">13a </A>
De Riccardis F.
Bonala RR.
Johnson F.
J. Am. Chem. Soc.
1999,
121:
10453
<A NAME="RG03402ST-13B">13b </A>
De Riccardis F.
Johnson F.
Org. Lett.
2000,
2:
293
<A NAME="RG03402ST-14">14 </A>
Wang Z.
Rizzo CJ.
Org. Lett.
2001,
3:
565
<A NAME="RG03402ST-15">15 </A>
Schoffers E.
Olsen PD.
Means JC.
Org. Lett.
2001,
3:
4221
<A NAME="RG03402ST-16">16 </A>
Yin J.
Buchwald SL.
Org. Lett.
2000,
2:
1101 ; and references cited
<A NAME="RG03402ST-17">17 </A>
Uhlmann E.
Pfleiderer W.
Helv. Chim. Acta
1981,
64:
1688
<A NAME="RG03402ST-18">18 </A>
Gannett PM.
Sura TP.
Synth. Commun.
1993,
23:
1611
<A NAME="RG03402ST-19">19 </A>
Gao X.
Jones RA.
J. Am. Chem. Soc.
1987,
109:
1275
<A NAME="RG03402ST-20">20 </A>
Harwood EA.
Sigurdsson ST.
Edfeldt NB.
Reid BR.
Hopkins PB.
J. Am. Chem. Soc.
1999,
121:
5081
<A NAME="RG03402ST-21">21 </A>
Rac -BINAP is much less expensive than the biphenyl ligand.
<A NAME="RG03402ST-22">22 </A>
Old DW.
Wolfe JP.
Buchwald SL.
J. Am. Chem. Soc.
1998,
120:
9722
<A NAME="RG03402ST-23">23 </A>
Amination of N
2 -i -Butyryl-O
6 -benzyl-8-bromo-3′,5′-bis(t -butyldimethylsilyl)-2′-deoxyguanosine: 450.0 mg (0.61 mmol) 8-Bromo-2′-deoxyguanosine,
156.0 mg (0.73 mmol) K3 PO4 , 56.1 mg (61.0 µmol) tris(dibenzylideneacetone)di-palladium(0) (Pd2 dba3 ), 114.4 mg (0.18 mmol) racemic-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP)
and 131.2 mg (1.22 mmol) of p -toluidine was solubilized in 15 mL dry 1,2-DME in an inert atmosphere and stirred at 80 °C until the reaction was
complete (TLC analysis). After cooling to r.t., 1 mL of sat. sodium bicarbonate solution
was added. After addition of 10 mL of brine the layers were separated and the aq layer
was extracted three times with 10 mL of ethyl acetate. The combined organic layers were washed twice with 10 mL of
brine and once with a mixture of 10 mL brine and 2 mL water. The organic layer was
dried (Na2 SO4 ) and the solvent was removed in vacuo. Purification by chromatography on silica gel,
eluting with 20% ethyl acetate in hexane afforded 350 mg (75%) of the desired product
as a light-yellow foam.
<A NAME="RG03402ST-24">24 </A>
N
2 -i -Butyryl-8-N -(4-methylphenylamino)-O 3′-[(2-cyano-ethoxy)-(N ,N -diisopropylamino)phosphinyl]-O 5′-dimeth-oxytrityl-2′-deoxyguanosine: 200.0 mg (0.27 mmol) of N
2 -i -butyryl-8-N -(4-methylphenylamino)-O 5′-dimethoxytrityl-2′-deoxyguanosine were dissolved in 7 mL dry CH2 Cl2 and treated subsequently with 234 µL (1.34 mmol) of DIPEA and 113 µL (0.51 mmol)
of (2-cyanoethoxy)-(N ,N -diiso-propylamino)-chlorophosphine. After stirring for 1 h at r.t., the reaction
was stopped by adding 0.5 mL of methanol. The solution was diluted with 50 mL of CH2 Cl2 and washed with 5% aq NaHCO3 followed by brine. The organic layer was dried and concentrated to dryness. The residue
was purified by chromatography on silica gel, eluting with CH2 Cl2 /ace-tonitrile and CH2 Cl2 /methanol to give 215.7 mg (85%) as a light-yellow solid.
<A NAME="RG03402ST-25">25 </A> It should be added that a synthesis of a C8-N -acetylamino-fluorene (AAF) adduct phosphoramidite has been published before. However,
the initial synthesis of the adduct gave very low yields and the protecting group
chemistry was different to ours, ref. and:
Zhou Y.
Chládek S.
Romano LJ.
J. Org. Chem.
1994,
59:
556