Anästhesiol Intensivmed Notfallmed Schmerzther 2002; 37(2): 68-76
DOI: 10.1055/s-2002-20391
Aktuelle Medizin und Forschung
© Georg Thieme Verlag Stuttgart · New York

Phylogenese des Immunsystems

Phylogenetics of the ImmunosystemR.  Lindner
  • 1Abteilung Zellbiologie im Zentrum Anatomie Medizinische Hochschule Hannover
Further Information

Publication History

Publication Date:
26 February 2002 (online)

Zusammenfassung

Das Immunsystem, wie wir es beim Menschen kennen, setzt sich aus zwei eng miteinander verzahnten Teilen zusammen: der angeborenen, „unspezifischen” Immunabwehr und der adaptiven, „spezifischen” Immunität. Elemente der angeborenen Immunabwehr haben sich bereits sehr früh in der Evolution des Tierreichs ausgebildet. Adaptive Immunabwehr hingegen entstand innerhalb eines relativ kurzen Zeitraums ausschließlich bei Wirbeltieren mit Kiefer. Neue Daten vor allem aus Genomsequenzierprojekten erlauben nun erste Rückschlüsse auf die Ereignisse, die zur Ausbildung adaptiver Immunität führten.

Abstract

The human immune system is composed of two closely cooperating entities: innate, “unspecific” immune defense on one hand and adaptive, “specific” immunity on the other. Innate immune defense mechanisms were already developed very early in the evolution of the animal kingdom. By contrast, adaptive immunity exclusively evolved in jawed vertebrates within a surprisingly short time span. New data especially from genome sequencing projects now allow first glimpses on those events that resulted in the formation of adaptive immunity.

Literatur

  • 1 Magor B G, De Tomaso A, Rinkevich B, Weissman I L. Allorecognition in colonial tunicates: protection against predatory cell lineages?.  Immunol Rev.. 1999;  167 69-79
  • 2 Boman HG F I, von Hofstein P, Kockum K, Lee J -Y, Xanthopoulos K G, Bennich H, Engstrom Å, Merrifield B R, Andreu D. Antibacterial immune proteins in insects - a review of some current perspectives. Berlin: Springer Verlag 1986
  • 3 Pasquier L D. Evolution of the Immune System. In: Paul WE, editor Fundamental Immunology. 3rd ed. New York: Raven Press 1994: 199-233
  • 4 Sun SC L I, Boman H G, Faye I, Schmidt O. Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily.  Science. 1990;  250 1729-1732
  • 5 Flajnik M F, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system.  Immunity. 2001;  15 (3) 351-362
  • 6 Janeway CA TP, Walport M, Capra J D. Immunobiology. 4th ed. New York: Garland 1999
  • 7 Bartl S, Baltimore D, Weissman I L. Molecular evolution of the vertebrate immune system.  Proc Natl Acad Sci U S A. 1994;  91 (23) 10769-10770
  • 8 Oettinger M A, Schatz D G, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination.  Science. 1990;  248 (4962) 1517-1523
  • 9 Agrawal A, Eastman Q M, Schatz D G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system.  Nature. 1998;  394 (6695) 744-751
  • 10 Reinherz E L, Tan K, Tang L, Kern P, Liu J -H, Xiong Y. et al . The crystal structure of a T cell receptor in complex with peptide and MHC class II.  Science. 1999;  286 1913-1921
  • 11 Consortium T MS. Complete sequence and gene map of a human major histocompatibility complex.  Nature. 1999;  401 (6756) 921-923
  • 12 Srivastava P, Menoret A, Basu S, Binder R J, McQuade K L. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world.  Immunity. 1998;  8 657-665
  • 13 Grandea A G , Van Kaer L. Tapasin: an ER chaperone that controls MHC class I assembly with peptide.  Trends Immunol. 2001;  22 (4) 194-199
  • 14 Enns C A. Pumping iron: the strange partnership of the hemochromatosis protein, a class I MHC homolog, with the transferrin receptor.  Traffic. 2001;  2 (3) 167-174
  • 15 Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G. et al . The sequence of the human genome.  Science. 2001;  291 (5507) 1304-1351
  • 16 Abi Rached L, McDermott M F, Pontarotti P. The MHC big bang.  Immunol Rev. 1999;  167 33-44
  • 17 Wolfe K H. Yesterday's polyploids and the mystery of diploidization.  Nat Rev Genet. 2001;  2 (5) 333-341
  • 18 Joly E, Butcher G W. Why are there two rat TAPs?.  Immunol Today. 1998;  19 (12) 580-585
  • 19 Kaufman J, Milne S, Gobel T W, Walker B A, Jacob J P, Auffray C. et al . The chicken B locus is a minimal essential major histocompatibility complex.  Nature. 1999;  401 (6756) 923-925
  • 20 Lindahl K F, Byers D E, Dabhi V M, Hovik R, Jones E P, Smith G P. et al . H2-M3, a full-service class Ib histocompatibility antigen.  Annu Rev Immunol. 1997;  15 851-879
  • 21 Jayawardena-Wolf J, Bendelac A. CD1 and lipid antigens: intracellular pathways for antigen presentation.  Curr Opin Immunol. 2001;  13 (1) 109-113
  • 22 Klein J, Sato A. Birth of the major histocompatibility complex.  Scand J Immunol. 1998;  47 (3) 199-209
  • 23 Ohta Y, Okamura K, McKinney E C, Bartl S, Hashimoto K, Flajnik M F. Primitive synteny of vertebrate major histocompatibility complex class I and class II genes.  Proc Natl Acad Sci USA. 2000;  97 (9) 4712-4717

Dr. Robert Lindner

Abt. Zellbiologie im Zentrum Anatomie, OE 4130

Carl-Neuberg-Str. 1

30625 Hannover

Email: rli@zellbiologie.mh-hannover.de

    >