References
<A NAME="RG19301ST-1">1</A>
Nagel M.
Ph.D. Thesis
University of Zürich;
Switzerland:
2001.
For examples of so-called ”internal" (or also ”intramolecular") [1,5]-H shift reactions
of the general retro-ene type under flash thermolysis conditions, see :
<A NAME="RG19301ST-2A">2a</A>
Rippol J.-L.
Vallée Y.
Synthesis
1993,
659
<A NAME="RG19301ST-2B">2b</A>
Brown RFC. In Pyrolytic Methods in Organic Chemistry
Wasserman RH.
Academic Press;
New York:
1980.
Chap. 7.
p.229-246 ; and references therein
<A NAME="RG19301ST-2C">2c</A>
Gajewski JJ.
Hydrocarbon Thermal Isomerizations
Academic Press;
New York:
1981.
<A NAME="RG19301ST-2D">2d</A>
Karpf M.
Angew. Chem., Int. Ed. Engl.
1986,
25:
414 ; Angew. Chem. 1986, 98, 413; and references therein
<A NAME="RG19301ST-3">3</A>
All mentioned tertiary cyclic vinyl substituted alcohols as well as the ethynyl substituted
alcohols were synthesized from the corresponding cycloalkanones by addition of vinyl
or ethynyl magnesium bromide according to the general procedure described in ref.
4.
<A NAME="RG19301ST-4A">4a</A>
Dimitrov V.
Bratovanov S.
Simova S.
Kostova K.
Tetrahedron Lett.
1994,
35:
6713
<A NAME="RG19301ST-4B">4b</A>
Typical Procedure for the Synthesis of Vinylcycloalkanols: Drying of cerium chloride: CeCl3 heptahydrate (100 g, 0.268 mol) was heated under reduced pressure (HV pump) in a
Büchi Kugelrohr oven with continuous rotation of the bulb, at first with an air bath
temperature of 70-80 °C for 5-6 h, then for 3-4 h at 110-120 °C, and finally for about
12 h (overnight) at 150-160 °C. The vaporized water was collected in cooling traps
(liquid N2) and the thawed condensates were collected (about 34 mL). The dried (strongly hygroscopic)
ivory-colored CeCl3 was stored under an argon atmosphere at r.t. in the dark. No loss in activity could
be observed during storage over several months. Precomplexation of the ketone: Cyclododecanone (36.4 g, 0.2 mol) was, with stirring, added to a suspension of 5.0
g anhyd CeCl3 (0.02 mol, 0.1 mol equiv.) in anhyd THF (100 mL) at r.t. under an inert atmosphere.
After 0.5-2 h, the yellowish colored suspension became homogenous and uniformly gel-
(or yogurt-)like. To this mixture, of a 1 M solution of vinyl magnesium bromide (320
mL) in anhyd THF (0.32 mol, ca 1.6 mol equiv.) was added with stirring via a cannula
within 10 min, whereby the temperature of the reaction mixture increased to 35-40
°C. After the exothermic phase of the reaction, stirring was continued for 20-30 min
and the conversion of the starting ketone was monitored by TLC and GC analyses (normally
more than 80% had been consumed after 15 min). Work-up: The now greyish-brown reaction mixture was poured into cold water (1 L ) and t-BuOMe (500 mL) were added. With stirring, a 10% aqueous HCl solution was added until
the slimy or gel-like consistency of the mixture disappeared, and the mixture became
clear and two-phased (pH < 3). The organic phase was washed several times with water,
then with sat. NaHCO3 solution, and brine. After drying (MgSO4) and evaporation of the solvent under reduced pressure, the crude 1-vinylcyclododecanol
6 (GC purity about 90%) was purified either by bulb-to-bulb distillation (HV) and subsequent
crystallization from hexane-t-BuOMe (95:5, v/v) or by chromatography on a short column (silica gel, eluent, hexane-t-BuOMe 97:3-95:5). Allylic alcohol 6 was obtained in yields of 75-85% as a colorless waxy solid (mp 53 °C). 1H NMR (300 MHz, CDCl3): 5.98 (dd, J = 10.8, 17.4 Hz, 1 H), 5.20 (dd, J = 1.4, 17.4 Hz, 1 H), 5.01 (dd, J = 1.4, 10.8 Hz, 1 H), 1.9-1.2 (m, 23 H). 13C NMR (75 MHz, CDCl3): 145.3 (d); 111.0 (t); 75.3 (s); 34.6(2), 26.3(2), 25.9, 22.5(2), 22.1(2), 19.5(2)(6 t). EI-MS (GC/MS): 210.2 (2, M
+
), 192.2 (50, M - 18), 77.7(98), 67(100), 55(97). Also see:
<A NAME="RG19301ST-4C">4c</A>
Marcou A.
Normant H.
Bull. Soc. Chim. Fr.
1965,
3491
<A NAME="RG19301ST-4D">4d</A>
Herz W.
Juo R.-R.
J. Org. Chem.
1985,
50:
618
<A NAME="RG19301ST-4E">4e</A>
Ref. 6a.
The thermo-isomerization process was performed in flow reactor systems with different
dimensions: e.g., a quartz tube reactor (40 cm length, 22 mm, and 40 mm i.d., respectively)
heated by a tube furnace (35 cm single temperature zone, in a nearly horizontal position),
cf. also:
<A NAME="RG19301ST-5A">5a</A>
Nagel M.
Diploma Thesis
University of Zürich;
Switzerland:
1998.
<A NAME="RG19301ST-5B">5b</A>
Nagel M.
Hansen H.-J.
Helv. Chim. Acta
2000,
83:
1022
<A NAME="RG19301ST-5C">5c</A>
Typical Procedure: After evacuation of the apparatus with a high-vacuum oil pump,
the starting material (typically 0.5-2 g) was distilled slowly (within 10-20 min,
about 5-20 g/h) through the preheated reactor tube (contact times estimated at about
1-2 s). A flow of inert gas (N2 or Ar) was adjusted from 15 mL/min to over 50 mL/min (1-3 L/h). At the end of the
reactor unit the high boiling isomerization products were collected in the first cooling
trap at about 0 °C (85-90% recovery), and the more volatile side products in subsequent
traps, which were cooled to lower temperatures. By adding filling materials into the
reactor, surface-catalyzed side reactions (e.g. dehydration) become predominant (cf.
ref.
[2b]
and also ref.
[13]
). For more general reviews on short contact time reactions and synthetic applications
of gas phase flash vacuum pyrolysis techniques, see also:
<A NAME="RG19301ST-5D">5d</A>
McNab H.
Contemp. Org. Synth.
1996,
3:
373 ; and references therein
<A NAME="RG19301ST-5E">5e</A>
Cadogen JIG.
Hickson CL.
McNab H.
Tetrahedron
1986,
42:
2135
<A NAME="RG19301ST-5F">5f</A>
Schiess P.
Thermochim. Acta
1987,
112:
31 ; and references therein
<A NAME="RG19301ST-5G">5g</A>
Wiersum UE.
Alrdrichimica Acta
1984,
17:
31
For syntheses of 7, see e.g.:
<A NAME="RG19301ST-6A">6a</A>
Galatsis P.
Millan SD.
Faber T.
J. Org. Chem.
1993,
58:
1215
<A NAME="RG19301ST-6B">6b</A>
Bienz S.
Hesse M.
Helv.Chim. Acta
1987,
70:
2146
<A NAME="RG19301ST-6C">6c</A>
Drotloff H.
Rotter H.
Emeis D.
Moeller M.
J. Am. Chem. Soc.
1987,
109:
7797
<A NAME="RG19301ST-6D">6d</A>
Porter NA.
Chang VH.-T.
Magnin DR.
Wright BT.
J. Am. Chem. Soc.
1988,
110:
3554
<A NAME="RG19301ST-6E">6e</A>
Porter NA.
Magnin DR.
Wright BT.
J. Am. Chem. Soc.
1986,
108:
2787
<A NAME="RG19301ST-6F">6f</A>
Wender PA.
Sieburth McNS.
Petraitis JJ.
Singh SK.
Tetrahedron
1981,
37:
3967
<A NAME="RG19301ST-6G">6g</A>
Karpf M.
Dreiding AS.
Helv. Chim. Acta
1975,
58:
2409
<A NAME="RG19301ST-6H">6h</A>
Mühlstädt M.
Gräfe J.
Chem. Ber.
1967,
100:
223
<A NAME="RG19301ST-6I">6i</A>
Müller E.
Bauer M.
Justus Liebigs Ann. Chem.
1962,
654:
92
For syntheses of 9, see:
<A NAME="RG19301ST-7A">7a</A>
Weiper-Idelmann A.
Kahmen M.
Schäfer HJ.
Gockeln M.
Acta Chem. Scand.
1998,
52:
672
<A NAME="RG19301ST-7B">7b</A>
Nishino M.
Kondo H.
Miyake A.
Chem. Lett.
1973,
667
<A NAME="RG19301ST-8A">8a</A>
Ruzicka L.
Helv. Chim. Acta
1926,
9:
245
<A NAME="RG19301ST-8B">8b</A>
Mathur HH.
Bhattacharyya SC.
J. Chem. Soc.
1963,
114
<A NAME="RG19301ST-8C">8c</A>
Motoda O.
Chem. Abstr.
1950,
5828
<A NAME="RG19301ST-8D">8d</A>
Williams AS.
Synthesis
1999,
1707 ; and references therein
<A NAME="RG19301ST-9A">9a</A>
Baldwin JE.
Vollmer HR.
Lee V.
Tetrahedron Lett.
1999,
40:
5401
<A NAME="RG19301ST-9B">9b</A>
Satoh T.
Itoh N.
Gengyo K.
Takada S.
Asakawa N.
Tetrahedron
1994,
50:
11839
<A NAME="RG19301ST-9C">9c</A>
Hashimoto N.
Aoyama T.
Shioiri T.
Chem. Pharm. Bull.
1982,
30:
119
<A NAME="RG19301ST-9D">9d</A>
Karpf M.
Dreiding AS.
Helv. Chim. Acta
1975,
58:
2409
<A NAME="RG19301ST-9E">9e</A>
Taguchi H.
Yamamoto H.
Nozaki H.
J. Am. Chem. Soc.
1974,
96:
6510
<A NAME="RG19301ST-9F">9f</A>
Kirchhof W.
Stumpf W.
Franke W.
Liebigs Ann. Chem.
1965,
681:
32
<A NAME="RG19301ST-9G">9g</A>
Parham WE.
Sperley RJ.
J. Org. Chem.
1967,
926 ; see also ref.
For leading references to Exaltone
®(12), see:
<A NAME="RG19301ST-10A">10a</A>
Fráter G.
Bajgrowicz JA.
Kraft P.
Tetrahedron
1998,
54:
7633
<A NAME="RG19301ST-10B">10b</A>
Fráter G.
Lamparsky D. In Perfumes: Art, Science and Technology
Müller PM.
Lamparsky D.
Elsevier;
London, New York:
1991.
Chap. 20.
p.533-555
<A NAME="RG19301ST-10C">10c</A>
Ohloff G.
Helv. Chim. Acta
1992,
75:
2041 ; and literature cited therein
<A NAME="RG19301ST-10D">10d</A>
Ohloff G.
Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte
Springer;
Berlin:
1990.
Chap. 9.
p.195-219
<A NAME="RG19301ST-10E">10e</A>
Mookherjee BD.
Wilson RA. In
Fragrance Chemistry: The Science of the Sense of Smell
Theimer ET.
Academic Press;
New York:
1982.
Chap. 12.
p.433-494
<A NAME="RG19301ST-10F">10f</A>
Bienz S.
Hesse M.
Helv. Chim. Acta
1988,
71:
1704 ; see also ref.
<A NAME="RG19301ST-10G">10g</A>
Suginome H.
Yamada S.
Tetrahedron Lett.
1987,
28:
3963
<A NAME="RG19301ST-10H">10h</A>
Feldhues M.
Schäfer HJ.
Tetrahedron
1986,
42:
1285
<A NAME="RG19301ST-10I">10i</A>
Mehta G.
Rao KS.
Tetrahedron Lett.
1984,
25:
1839
<A NAME="RG19301ST-10K">10k</A>
Fehr Ch.
Helv. Chim. Acta
1983,
66:
2512
<A NAME="RG19301ST-10L">10l</A>
Kato T.
Kondo H.
Miyake A.
Bull. Chem. Soc. Jpn.
1980,
53:
823
<A NAME="RG19301ST-10M">10m</A>
Karpf M.
Dreiding AS.
Helv. Chim. Acta
1977,
60:
3045
To the best of our knowledge, this two-carbon ring enlargement procedure is one of
the shortest repeatable ring expansion reactions applied to carbocyclic systems: Examples
of preparatively useful and efficiently repeatable ring expansion reactions by more
than one carbon atom in carbocyclic systems are only rarely reported in the literature.
For a definition and examples, see:
<A NAME="RG19301ST-11A">11a</A>
Heimgartner H.
Chimia
1980,
34:
333 ; and references therein
<A NAME="RG19301ST-11B">11b</A>
Hesse M.
Ring Enlargement in Organic Chemistry
VCH;
Weinheim, Germany:
1990.
Chap. 5.
p.73-95 ; and references therein
<A NAME="RG19301ST-12">12</A>
Thies RW.
Billigmeier JE.
J. Am. Chem. Soc.
1974,
96:
200 ; and references therein
<A NAME="RG19301ST-13A">13a</A>
Failes RL.
Stimson VR. In
The Chemistry of the Hydroxy Group
Patai S.
Wiley;
Chichester:
1980.
Chap. 11.
p.449-468 ; and references therein.
<A NAME="RG19301ST-13B">13b</A>
Grignard V.
Chambret F.
C. R. Hebd. Acad.Sci.
1926,
182:
299
<A NAME="RG19301ST-13C">13c</A>
Holmes JL.
Lossing FP.
J. Am. Chem. Soc.
1982,
104:
2648
<A NAME="RG19301ST-13D">13d</A>
Chuchani G.
Rotinov A.
Dominguez R.
Int. J. Chem. Kinet.
1999,
31:
401
<A NAME="RG19301ST-14">14</A> For a recent general survey and leading references, see:
Hudlicky T.
Becker DA.
Fan RL.
Kozhushkov SI. In
Houben-Weyl
Vol. E17c:
de Meijere A.
Thieme;
Stuttgart:
1997.
p.2538-2565
See also:
<A NAME="RG19301ST-15A">15a</A>
Gutsche CD.
Redmore D.
Carbocyclic Ring Expansion Reactions
Academic Press;
New York:
1968.
Chap. 9.
p.161-173
<A NAME="RG19301ST-15B">15b</A>
Gajewsky JJ.
Hydrocarbon Thermal Isomerizations
Academic Press;
New York:
1982.
p.81-87 and 177-185
<A NAME="RG19301ST-15C">15c</A>
Salaün J. In
The Chemistry of the Cyclopropyl Group
Patai S.
Rappoport Z.
Wiley;
New York:
1987.
p.809-878
<A NAME="RG19301ST-15D">15d</A>
Baldwin JE. In
The Chemistry of the Cyclopropyl Group
Vol 2:
Rappoport Z.
Wiley;
Chichester:
1995.
p.469-494
<A NAME="RG19301ST-15E">15e</A>
Salaün J.
Top. Curr. Chem.
2000,
207:
1-67
<A NAME="RG19301ST-15F">15f</A>
Trost BM.
Bogdanowicz MJ.
J. Am. Chem. Soc.
1973,
95:
5311
<A NAME="RG19301ST-15G">15g</A>
Salaün J.
Ollivier J.
Nouv. J. Chim.
1981,
5:
587
<A NAME="RG19301ST-15H">15h</A>
Salaün J.
Chem. Rev.
1983,
83:
619 ; and references therein
For kinetic investigations, see:
<A NAME="RG19301ST-16A">16a</A>
Trost BM.
Scudder PH.
J. Org. Chem.
1981,
46:
506
<A NAME="RG19301ST-16B">16b</A>
Mc Gaffin G.
de Meijere A.
Walsh R.
Chem. Ber.
1991,
124:
939 ; and references therein.
For theoretical studies, see:
<A NAME="RG19301ST-17A">17a</A>
Baldwin JE.
J. Comput. Chem.
1998,
19:
222
<A NAME="RG19301ST-17D">17d</A>
Nendel M.
Sperling D.
Wiest O.
Houk KN.
J. Org. Chem.
2000,
65:
3259
<A NAME="RG19301ST-18">18</A>
A mechanism via a free radical reaction is also involved in a recent two-carbon ring
expansion procedure where a homolytic β-scission occurs in 1-alkenylcycloalkoxy radical
systems, see ref.
[6a]
Selected characteristic data of enones 19. 1H NMR (300 MHz, CDCl3): 6.35 [dd, J = 17.5, 10, H-C(2)], 6.25 [dd, J = 17.5, 1.5, H
trans
-C(1)], 5.80 [dd, J = 10, 1.5, H
cis
-C(1)], 2.60 [t, J = 7.5, H2-C(4)]; 0.90-0.85 (t-type m), [H3C-(ω)]. 13C NMR (75 MHz): 201 [s, C(3)], 136.5 [d, C(2)], 127.5 [t, C(1)], 39.5 [t, C(4)], 13.5 [q, C(ω)].
<A NAME="RG19301ST-19">19</A>
Addition of a ethynyl magnesium bromide solution in analogy to ref.
[4]
For 22 see:
<A NAME="RG19301ST-20A">20a</A>
Leonhard NJ.
Owens FH.
J. Am. Chem. Soc.
1958,
80:
6039
<A NAME="RG19301ST-20B">20b</A>
Stork G.
MacDonald TL.
J. Am. Chem. Soc.
1975,
97:
1264
For 24 see:
<A NAME="RG19301ST-21A">21a</A>
Prelog V.
Frenkiel L.
Kobelt M.
Barman P.
Helv. Chim. Acta
1947,
30:
1741
<A NAME="RG19301ST-21B">21b</A>
Stoll M.
Rouvé A.
Helv. Chim. Acta
1947,
30:
1822
<A NAME="RG19301ST-21C">21c</A>
Zountsas J.
Meier H.
Liebigs Ann. Chem.
1982,
1366
<A NAME="RG19301ST-21D">21d</A>
Engman L.
J. Org. Chem.
1988,
53:
4031
<A NAME="RG19301ST-21E">21e</A>
Tanaka K.
Ushio H.
Yasuyuki K.
Suzuki H.
J. Chem. Soc., Perkin Trans. 1
1991,
1445
<A NAME="RG19301ST-21F">21f</A>
Butlin RJ.
Linney ID.
Mahon MF.
Tye H.
Wills M.
J. Chem. Soc., Perkin Trans. 1
1996,
95 ; selected spectroscopic data: For 22: 1H NMR (300 MHz, CDCl3): 6.83 (dt, J = 15.8, 7.4 Hz, 1 H), 6.20 (dt, J = 15.8, 1.3 Hz, 1 H), 2.53-2.48 (m, 2 H), 2.30-2.26 (m, 2 H), 1.80-1.67 (m, 2 H), 1.58-1.52 (m, 2 H), 1.45-1.2 (m, 14 H). 13C NMR (75 MHz, CDCl3): 202.1 (s), 148.2, 130.3 (2 d), 40.4, 31.4, 26.6, 26.3, 26.2, 26.0, 25.8, 25.7, 25.4, 25.0, 24.9 (11 t). For 24: 1H NMR (300 MHz, CDCl3): 6.81 (td, J = 15.7, 7.5 Hz, 1 H), 6.19 (dt, J = 15.7, 1.3 Hz, 1 H), 2.52-2.47 (m, 2 H), 2.30-2.23 (m, 2 H), 1.72-1.44 (m, 4H), 1.4-1.2 (m, 16 H). 13C NMR (75 MHz, CDCl3): 201.7 (s), 147.9, 130.7 (2 d), 40.0, 31.6, 26.9, 26.8, 26.7, 26.6, 26.5, 26.2, 26.0, 25.4, 25.2 (12 t).
Tetradecadienone 23 was found to be a naturally occurring compound in the defense secretions produced
by soldier termites:
<A NAME="RG19301ST-22A">22a</A>
Prestwich GD.
Kaib M.
Wood WF.
Meinwald J.
Tetrahedron Lett.
1975,
16:
4701
<A NAME="RG19301ST-22B">22b</A>
Spanton SG.
Prestwich GD.
Tetrahedron
1982,
38:
1921
For examples of (±)-muscone syntheses via enone 24, see:
<A NAME="RG19301ST-23A">23a</A>
Stoll M.
Chimia
1948,
2:
217
<A NAME="RG19301ST-23B">23b</A>
Stoll M.
Commarmont K.
Helv. Chim. Acta
1948,
31:
554
<A NAME="RG19301ST-23C">23c</A>
Mookherjee BD.
Patel RR.
Ledig WR.
J. Org. Chem.
1971,
36:
4124
<A NAME="RG19301ST-23D">23d</A>
Korzienowsky SH.
Vanderbilt DP.
Hendry LB.
Org. Prep. Proced. Int.
1976,
8:
81
<A NAME="RG19301ST-23E">23e</A>
Nokami J.
Kusumoto Y.
Jinnai K.
Kawada M.
Chem. Lett.
1977,
715
<A NAME="RG19301ST-23F">23f</A>
Takahashi T.
Nagashima T.
Tsuij J.
Tetrahedron Lett.
1981,
22:
1359
<A NAME="RG19301ST-23G">23g</A>
Sakane S.
Maruoka K.
Yamamoto H.
Tetrahedron Lett.
1983,
24:
943
<A NAME="RG19301ST-23H">23h</A>
Asaoka M.
Abe M.
Takei H.
Bull. Chem. Soc. Jpn.
1985,
58:
2145
<A NAME="RG19301ST-23I">23i</A>
Kabbara J.
Flemming S.
Nickisch K.
Neh H.
Westermann J.
Chem. Ber.
1994,
127:
1489
<A NAME="RG19301ST-23K">23k</A>
See also ref.
[7a]
For asymmetric muscone syntheses from enone 24, see:
<A NAME="RG19301ST-24A">24a</A>
Nelson KA.
Mash EA.
J. Org. Chem.
1986,
51:
2721
<A NAME="RG19301ST-24B">24b</A>
Tanaka K.
Matsui J.
Suzuki H.
J. Chem. Soc., Perkin Trans 1
1993,
153 ; and references therein
<A NAME="RG19301ST-24C">24c</A>
Tanaka K.
Matsui J.
Somemiya K.
Suzuki H.
Synlett
1994,
351
<A NAME="RG19301ST-24D">24d</A>
Yamaguchi M.
Shiraishi T.
Hirama M.
J. Org. Chem.
1996,
61:
3520
<A NAME="RG19301ST-24E">24e</A>
Alexakis A.
Benheim C.
Fournioux X.
Van den Heuvel A.
Levêque J.-M.
March S.
Rosset S.
Synlett
1999,
11:
1811
<A NAME="RG19301ST-24F">24f</A>
Alexakis A.
Chimia
2000,
54:
55
<A NAME="RG19301ST-25">25</A>
Hiyama T.
Mishima T.
Kitatani K.
Nozaki H.
Tetrahedron Lett.
1974,
3297