Deutsche Zeitschrift für Onkologie 2001; 33(3): 85-90
DOI: 10.1055/s-2001-19445
Wissenschaft & Forschung

Karl F. Haug Verlag, in: MVH Medizinverlage Heidelberg GmbH & Co. KG

In Vitro Response of Retinoblastoma, Lymphoma and Non-malignant Cells to Direct Current: Therapeutic Implications

George D. O'Clock[1] , Tobias Leonard
Further Information

Publication History

Publication Date:
08 January 2002 (online)

In vitro electrical stimulation results for a variety of cancer cells, using low-level direct currents, indicate that certain ranges or “windows” of current, or current density, will promote necrosis and the suppression of proliferation for malignant cells while normal cell proliferation is not as severely suppressed. In some cases, the proliferation index for the surrounding normal cell can be enhanced at the same current and current density levels that suppress malignant cell proliferation. These results have profound implications for electrotherapeutic techniques that have been applied toward the treatment of cancer, diseases of the visual system and other health problems. The results of this study indicate that two very important parameters that should be monitored in low-level direct current electrotherapeutic protocols are current and total charge.

References

  • 01 Ingvar S.. Reaction of cells to the galvanic current in tissue cultures.  Proc Soc Exp Biol. 17 1919/1920;  198-9
  • 02 Roffo Jr A. E.. Relation entre les ondes electriques et la multiplication cellulaire dans les cultures.  Arch Electric Med. 42 1934;  466-75
  • 03 Lyte M., Gannon J. E., O'Clock G. D.. Effects of in vitro electrical stimulation on enhancement and suppression of malignant lymphoma cell proliferation.  J Natl Cancer Inst. 83 1991;  116-9
  • 04 O'Clock G. D.. The effects of in vitro electrical stimulation on eukaryotic cells: suppression of malignant cell proliferation.  J Orthomol Med. 12 1997;  173-81
  • 05 Yen Y., Li J. R., Zhou B. S., Rojas F., Yu J., Chou C. K.. Electrochemical treatment of human KB cells in vitro.  Bioelectromagnetics. 20 1999;  34-41
  • 06 Veiga V. F., Holandino C., Rodrigues M. L., Capella M. A., Menezes S., Alviano C. S.. Cellular damage and altered carbohydrate expression in P 815 tumor cells induced by direct electric current: an in vitro analysis.  Bioelectromagnetic. 21 2000;  597-607
  • 07 Nordenström B. E. W.. Electric potentials in pulmonary lesions.  Acta Radiol. 11 1971;  1-16
  • 08 Nordenström B. E. W.. Electrochemical treatment of cancer: variable response to anodic and cathodic fields.  Am J Clin Oncol. 12 1989;  530-536
  • 09 Xin Y. L.. Advances in the treatment of malignant tumors by electrochemical therapy.  Eur J Surg (Supplement). 574 1994;  31-6
  • 10 Gunn R. M.. On the continuous electrical current as a therapeutic agent in atrophy of the optic nerve and in retinitis pigmentosa.  Royal London Ophthalmic Hospital Reports. 10 1882;  161-92
  • 11 Derby H.. On the possible retardation of retinitis pigmentosa.  Am Ophth Soc Trans. 4 1886-1887;  217-27
  • 12 Allen M. J., Jarding J. B., Zehner R.. Macular degeneration treatments with nutrients and micro current electricity .  J Orthomol Med. 13 1998;  211-14
  • 13 Heffernan M.. The effect of variable microcurrents on EEG spectrum and pain control.  J Clin Med. 4 1997;  2-8
  • 14 Durand B., Christel P., Assailly J.. In: Burny, F.; Herbst, E.; Hinsenkamp, M. (eds.) Electric stimulation of bone growth and repair. Springer Verlag, New York 1978: 19-24
  • 15 Du Bois-Reymond E.. Untersuchungen uber thierische elektricitat. Berlin, Reimer 1860: 268
  • 16 Barnes T. C.. Healing rate of human skin determined by measurement of the electrical potential of experimental abrasions.  Am J Surg. 69 1945;  82-8
  • 17 Nordenström B. E. W.. Biokinetic impacts on structure and imaging of the lung: the concept of biologically closed electric circuits.  Am J Roentg. 145 1985;  447-67
  • 18 Becker R. O.. A method for producing cellular dedifferentiation by means of very small electric currents.  Trans NY Acad Sci. 29 1967;  606-15
  • 19 Nordenström B. E. W.. Biologically closed electric circuits. Stockholm, Nordic Medical Publications 1983: 112-97
  • 20 Douwes F. R.. Proceedings of the Fourth International Symposium on Biologically Closed Electric Circuits; Sponsored by the International Association for Biologically Closed Electric Circuits in Biomedicine (IABC): O'Clock (Ed.), Bloomington, MN 1997
  • 21 Xin Y. L., Peng Z. B.. Effect of electrochemical therapy on breast cancers of middle and late stage. Proceedings of the Fourth International Symposium on Biologically Closed Electric Circuits; Sponsored by the International Association for Biologically Closed Electric Circuits in Biomedicine (IABC): Radisson Hotel South, Minneapolis, MN 1997
  • 22 Dima V. F., Vasiliu V., Popescu L., Mihilescu I. N., Dima S. V., Murg B., Popa A.. Biological effects of pulsed near-ultraviolet laser irradiation in mouse lymphoma Cells (EL-4).  Optical Eng. 35 1996;  1360-66
  • 23 Cheng N., Van Hoof H., Bockn E., Hoogmartens M. J., Mulier J. C.. et al. . The effects Of electric currents on ATP generation, protein synthesis and membrane transport in rat skin.  Clin Orthop. 171 1982;  264-71
  • 24 Huang R., Peng L., Hertz L.. Effects of a low-voltage static electric field on energy Metabolism in astrocytes.  Bioelectromagnetics. 18 1997;  77-80
  • 25 Poo M. M., Poo W. J., Lam J. W.. Lateral electrophoresis and diffusion of concanavalin A receptors in the membrane of embryonic muscle cell.  J Cell Biol. 76 1978;  483-501
  • 26 Nordenström B. E. W.. Impact of biologically closed electric circuits (BCEC) on Structure and function.  Int Physiol & Behav Sci. 27 1992;  285-303
  • 27 Polk C., Postow E.. Handbook of biological effects of electromagnetic fields. Boca Raton, FL: CRC Press 1986
  • 28 Weaver J. C., Astumian R. D.. The response of living cells to very weak electric Fields: the thermal noise limit.  Science. 247 1990;  459-62
  • 29 Mino H., Yana K.. A parametric modeling of membrane current fluctuations with is application to the estimation of the kinetic properties of single ion channels.  IEEE Trans Biomed Eng. 36 1989;  1028-37
  • 30 Xin Y. L.. The clinical advance in application of EChT within the past ten years. The 3rd Congress of the International Association of Biologically Closed Electric Circuits in Biomedicine Society (Abstracts); Sponsored by the Chinese Medical Association and China-Japan Friendship Hospital: International Conference Center of China-Japan Friendship Hospital. Beijing, China 27-30 1998: 81-92

01 Correspondence to: George D. O'Clock, PhD, Department of Electrical and Computer Engineering and Technology, 137 Trafton Science Center S, Minnesota State University, Mankato, MN 56001. e-mail: george.oclock@mankato.msus.edu

02 In some cases, Nordenström and Becker might prefer to include electrophoresis or electrophoretic transport [[17],[ 19]] in this process rather than using the term “electrical stimulation.”

    >