Semin Liver Dis 2001; 21(4): 471-488
DOI: 10.1055/s-2001-19030
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Cholangiocyte Biology and Cystic Fibrosis Liver Disease

Andrew P. Feranchak, Ronald J. Sokol
  • Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital and the University of Colorado Health Sciences Center, Denver, Colorado
Further Information

Publication History

Publication Date:
17 December 2001 (online)

ABSTRACT

Cystic fibrosis (CF) is one of the most common inherited diseases in the white population. The disease results from mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR). How this gene defect leads to the clinical manifestations of the disease, however, is not entirely clear. CFTR functions as a Cl- channel in the apical membrane of most secretory epithelia, including biliary epithelial cells, or cholangiocytes. In cholangiocytes, CFTR appears to be an important determinant of biliary secretion and bile flow. Additionally, recent evidence suggests that CFTR regulates other membrane transporters, channels, and proteins. Improving life expectancy has led to an increasing recognition of hepatobiliary complications from CF. The true prevalence of CF liver disease is unknown, but may affect up to 17-25% of CF patients. Clinical manifestations include hepatic steatosis, neonatal cholestasis, focal nodular cirrhosis, multilobular cirrhosis, and biliary tract complications. Why only a subset of CF patients develops severe liver disease and others with the same genotype do not is one of the many scientific curiosities of this disease. This review focuses on the function of CFTR in cholangiocytes with emphasis on ductular bile formation as well as the clinical consequences of abnormal CFTR, namely CF-associated liver disease. Data on the pathogenesis, prevalence, clinical course, and treatment of CF liver disease will be reviewed.

REFERENCES

  • 1 Dodge J A, Morison S, Lewis P A. Incidence, population, and survival of cystic fibrosis in the UK, 1968-95. UK Cystic Fibrosis Survey Management Committee.  Arch Dis Child . 1997;  77 493-496
  • 2 Kosorok M R, Wei W H, Farrell P M. The incidence of cystic fibrosis.  Stat Med . 1996;  15 449-462
  • 3 Gabriel S E, Brigman K N, Koller B H. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model.  Science . 1994;  266 107-109
  • 4 Anderson J. Cystic fibrosis of the pancreas and its relation to celiac disease.  Am J Dis Child . 2001;  56 344-399
  • 5 Fitzsimmons S C. The changing epidemiology of cystic fibrosis.  J Peds . 1993;  122 1-9
  • 6 Cystic Fibrosis Foundation, Patient Registry 1999 Annual Data Report. Bethesda, MD, September 2000
  • 7 DiSant'Agnese P, Darling R. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas.  Pediatrics . 1953;  12 549-563
  • 8 Riordan J R, Rommens J M, Kerem B-S. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.  Science . 1989;  245 1066-1073
  • 9 Anderson M P, Gregory R J, Thompson S. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity.  Science . 1991;  253 202-205
  • 10 Fuller C M, Benos D J. CFTR! Am J Physiol .  1992;  263 C267-C286
  • 11 Cohn J A, Strong T A, Picciotto M A. Localization of CFTR in human bile duct epithelial cells.  Gastroenterology . 1993;  105 1857-1864
  • 12 McGill J, Gettys T W, Basavappa S. Secretin activates Cl channels in bile duct epithelial cells through a cAMP-dependent mechanism.  Am J Physiol . 1994;  266 G731-G736
  • 13 Nathanson M H, Boyer J L. Mechanisms and regulation of bile secretion.  Hepatology . 1991;  14 551-566
  • 14 Strazzabosco M, Mennone A, Boyer J L. Intracellular pH regulation in isolated rat bile duct epithelial cells.  J Clin Invest . 1991;  87 1503-1512
  • 15 Roberts S K, Kuntz S M, Gores G. Regulation of bicarbonate-dependent ductular bile secretion assessed by lumenal micropuncture of isolated rodent intrahepatic bile ducts.  Proc Nat Acad Sci USA . 1993;  90 9080-9084
  • 16 Fitz J G, Basavappa S, McGill J. Regulation of membrane chloride currents in rat bile duct epithelial cells.  J Clin Invest . 1993;  91 319-328
  • 17 Levine R A, Hall R C. Cyclic AMP in secretin choleresis. Evidence for a regulatory role in man and baboons but not in dogs.  Gastroenterology . 1976;  70 537-544
  • 18 Alvaro D, Cho W K, Mennone A. Effect of secretin on intracellular pH regulation in isolated rat bile duct epithelial cells.  J Clin Invest . 1993;  92 1314-1325
  • 19 Chenderovitch J. Secretory function of the rabbit common bile duct.  Am J Physiol . 1972;  223 695-706
  • 20 London C D, Diamond J M, Brooks F P. Electrical potential differences in the biliary tree.  Biochim Biophys Acta . 1968;  150 509-517
  • 21 Basavappa S, Middleton J P, Mangel A. Cl- transport in human biliary cell lines.  Gastroenterology . 1993;  104 1796-1805
  • 22 Roberts S K, Yano M, Ueno Y. Cholangiocytes express the aquaporin CHIP and transport water via a channel-mediated mechanism.  Proc Nat Acad Sci USA . 1994;  91 13009-13013
  • 23 Marinelli R A, Pham L, Agre P. Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for secretin-induced vesicular translocation of aquaporin-1.  J Biol Chem . 1997;  272 12984-12988
  • 24 Marinelli R A, Pham L D, Tietz P S. Expression of aquaporin-4 water channels in rat cholangiocytes.  Hepatology . 2000;  31 1313-1317
  • 25 Gray M A, Pollard C E, Harris A. Anion selectivity and block of the small-conductance chloride channel on pancreatic duct cells.  Am J Physiol . 1990;  259 C752-C761
  • 26 Kunzelmann K, Gerlach L, Frobe U, Greger R. Bicarbonate permeability of epithelial chloride channels.  Pfluegers Arch . 1991;  417 616-621
  • 27 Ishiguro H, Steward M C, Wilson R W. Bicarbonate secretion in interlobular ducts from guinea-pig pancreas.  J Physiol . 1996;  495(Part 1) 179-191
  • 28 Soleimani M, Aronson P S. Ionic mechanisms of Na+/HCO3 cotransport in rabbit renal basolateral membrane vesicles.  J Biol Chem . 1989;  264 18302-18308
  • 29 O'Reilly C M, Winpenny J P, Argent B E. Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: inhibition by bicarbonate ions.  Gastroenterology . 2000;  118 1187-1196
  • 30 Choi J Y, Muallem D, Kiselyov K. Aberrant CFTR-dependent HCO3 - transport in mutations associated with cystic fibrosis.  Nature . 2001;  410 94-97
  • 31 McGill J, Gettys T W, Basavappa S. GTP-binding proteins regulate high conductance anion channels in rat bile duct epithelial cells.  J Membr Biol . 1993;  133 253-261
  • 32 Schlenker T, Fitz J G. Calcium-activated chloride channels in a human biliary cell line: regulation by calcium/ calmodulin-dependent protein kinase.  Am J Physiol . 1996;  271 G304-G310
  • 33 Roman R M, Feranchak A P, Salter K D. Endogenous ATP regulates Cl- secretion in cultured human and rat biliary epithelial cells.  Am J Physiol . 1999;  276 G1391-G1400
  • 34 Roman R M, Wang Y, Fitz J G. Regulation of cell volume in a human biliary cell line: calcium-dependent activation of K+ and Cl- currents.  Am J Physiol . 1996;  271 G239-G248
  • 35 Clarke L L, Grubb B R, Yankaskas J. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in cftr(-/-) mice.  Proc Nat Acad Sci USA . 1994;  91 479-483
  • 36 Chinet T C, Fullton J M, Yankaskas J R. Mechanism of sodium hyperabsorption in cultured cystic fibrosis nasal epithelium: a patch-clamp study.  Am J Physiol . 1994;  266(Part 1) C1061-C1068
  • 37 Gabriel S, Clarke L L, Boucher R C. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship.  Nature . 1993;  363 263-266
  • 38 Grubb B R, Vick R N, Boucher R C. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice.  Am J Physiol . 1994;  266(Part 1) C1478-C1483
  • 39 Egan M, Flotte T, Afione S. Defective regulation of outwardly rectifying Cl- channels by protein kinase A corrected by insertion of CFTR.  Nature . 1992;  358 581-584
  • 40 Schwiebert E M, Egan M E, Hwang T-H. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP.  Cell . 1995;  81 1063-1073
  • 41 Hyde S C, Gill D R, Higgins C F. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy.  Nature . 1993;  362 250-255
  • 42 Gao L, Kim K J, Yankaskas J R. Abnormal glutathione transport in cystic fibrosis airway epithelia.  Am J Physiol . 1999;  277(Part 1) L113-L118
  • 43 Linsdell P, Hanrahan J W. Glutathione permeability of CFTR.  Am J Physiol . 1998;  275 C323-C326
  • 44 Kuver R, Ramesh N, Lau S. Constitutive mucin secretion linked to CFTR expression.  Biochem Biophys Res Commun . 1994;  203 1457-1462
  • 45 Schreiber R, Nitschke R, Greger R. The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells.  J Biol Chem . 1999;  274 11811-11816
  • 46 Schreiber R, Pavenstadt H, Greger R. Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator.  FEBS Lett . 2000;  475 291-295
  • 47 Braunstein G M, Roman R M, Clancy J P. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation.  J Biol Chem . 2001;  276 6621-6630
  • 48 Short D B, Trotter K W, Reczek D. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton.  J Biol Chem . 1998;  273 19797-19801
  • 49 Fouassier L, Duan C Y, Feranchak A P. Ezrin-radixin-moesin-binding phosphoprotein 50 is expressed at the apical membrane of rat liver epithelia.  Hepatology . 2001;  33 166-176
  • 50 McGill J, Basavappa S, Shimokura G H. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells.  Gastroenterology . 1994;  107 236-243
  • 51 Alpini G, Glaser S, Robertson W. Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes.  Am J Physiol . 1997;  273(Part 1) G518-G529
  • 52 Lazaridis K N, Pham L, Tietz P S. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter.  J Clin Invest . 1997;  100 2714-2721
  • 53 Hofmann A F. Bile acids. In: Arias IM, ed. The Liver: Biology and Pathobiology New York: Raven, 1994: 677-718
  • 54 Yoon Y B, Hagey L R, Hofmann A F. Effect of side chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-Norursodeoxycholate in rodents.  Gastroenterology . 1986;  90 837-852
  • 55 Palmer R, Gurantz D, Hofmann A F. Hypercholeresis induced by norchenodeoxycholate in biliary fistula rodent.  Am J Physiol . 1987;  252 G219-G228
  • 56 Alpini G, Glaser S S, Ueno Y. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion.  Gastroenterology . 1999;  116 179-186
  • 57 Feranchak A P, Fitz J G, Roman R M. Volume-sensitive purinergic signaling in human hepatocytes.  J Hepatol . 2000;  33 174-182
  • 58 Roman R M, Wang Y, Lidofsky S D. Hepatocellular ATP-binding cassette protein expression enhances ATP release and autocrine regulation of cell volume.  J Biol Chem . 1997;  272 21970-21976
  • 59 Feranchak A P, Roman R M, Doctor R B. The lipid products of phosphoinositide 3-kinase contribute to regulation of cholangiocyte ATP and chloride transport.  J Biol Chem . 1999;  274 30979-30986
  • 60 Chari R S, Schutz S M, Haebig J A. Adenosine nucleotides in bile.  Am J Physiol . 1996;  270 G246-G252
  • 61 Knowles M R, Clarke L L, Boucher R C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis.  N Engl J Med . 1991;  325 533-538
  • 62 Schlenker T, Romac J MJ, Sharara A. Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes.  Am J Physiol . 1997;  273 G1108-G1117
  • 63 Reisin I L, Prat A G, Abraham E H. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel.  J Biol Chem . 1994;  269 20584-20591
  • 64 Al-Awqati Q. Regulation of ion channels by ABC transporters that secrete ATP.  Science . 1995;  269 805-806
  • 65 Pasyk E A, Foskett J K. Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3′-phosphate 5′-phosphosulfate channels in endoplasmic reticulum and plasma membranes.  J Biol Chem . 1997;  272 7746-7751
  • 66 Parr C E, Sullivan D M, Paradiso A M. Cloning and expression of a human P2u nucleotide receptor, a target for cystic fibrosis pharmacotherapy.  Proc Nat Acad Sci USA . 1994;  91 3275-3279
  • 67 Chan H C, Cheung W T, Leung P. Purinergic regulation of anion secretion by cystic fibrosis pancreatic duct cells.  Am J Physiol . 1996;  271 C469-C477
  • 68 Taylor A L, Schwiebert L M, Smith J J. Epithelial P2x purinergic receptor channel expression and function.  J Clin Invest . 1999;  104 875-884
  • 69 Bennett W D, Olivier K N, Zeman K L. Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis.  Am J Respir Crit Care Med . 1996;  153(Part 1) 1796-1801
  • 70 Sokol R J, Durie P R. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic Fibrosis Foundation Hepatobiliary Disease Consensus Group.  J Pediatr Gastroenterol Nutr . 1999;  28(Suppl 1) 1-13
  • 71 Bhaskar K R, Turner B S, Grubman S A. Dysregulation of proteoglycan production by intrahepatic biliary epithelial cells bearing defective (delta-f508) cystic fibrosis transmembrane conductance regulator.  Hepatology . 1998;  27 7-14
  • 72 Oppenheimer E H, Esterly J R. Hepatic changes in young infants with cystic fibrosis: possible relation to focal biliary cirrhosis.  J Pediatr . 1975;  86 683-689
  • 73 Peters R H, French P J, van Doorninck H J. CFTR expression and mucin secretion in cultured mouse gallbladder epithelial cells.  Am J Physiol . 1996;  271(Part 1) G1074-G1083
  • 74 Lindblad A, Hultcrantz R, Strandvik B. Bile-duct destruction and collagen deposition: a prominent ultrastructural feature of the liver in cystic fibrosis.  Hepatology . 1992;  16 372-381
  • 75 Malizia G, Brunt E M, Peters M G. Growth factor and procollagen type I gene expression in human liver disease.  Gastroenterology . 1995;  108 145-156
  • 76 Sokol R J. Fat-soluble vitamins and their importance in patients with cholestatic liver diseases.  Gastroenterol Clin North Am . 1994;  23 673-705
  • 77 Sokol R J, Straka M S, Dahl R. Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids.  Pediatr Res . 2001;  49 519-531
  • 78 Yerushalmi B, Dahl R, Devereaux M W. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition.  Hepatology . 2001;  33 616-626
  • 79 Pessayre D, Berson A, Fromenty B. Mitochondria in steatohepatitis.  Semin Liver Dis . 2001;  21 57-69
  • 80 Wilschanski M, Zielenski J, Markiewicz D. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations.  J Pediatr . 1995;  127 705-710
  • 81 Koch C, Cuppens H, Rainisio M. European Epidemiologic Registry of Cystic Fibrosis (ERCF): comparison of major disease manifestations between patients with different classes of mutations.  Pediatr Pulmonol . 2001;  31 1-12
  • 82 Colombo C, Apostolo M G, Ferrari M. Analysis of risk factors for the development of liver disease associated with cystic fibrosis.  J Pediatr . 1994;  124 393-399
  • 83 De Arce M, O'Brien S, Hegarty J. Deletion delta F508 and clinical expression of cystic fibrosis-related liver disease.  Clin Genet . 1992;  42 271-272
  • 84 Duthie A, Doherty D G, Williams C. Genotype analysis for delta F508, G551D and R553X mutations in children and young adults with cystic fibrosis with and without chronic liver disease.  Hepatology . 1992;  15 660-664
  • 85 Augarten A, Kerem B S, Yahav Y. Mild cystic fibrosis and normal or borderline sweat test in patients with the 3849 + 10 kb C → T mutation.  Lancet . 1993;  342 25-26
  • 86 Scott-Jupp R, Lama M, Tanner M S. Prevalence of liver disease in cystic fibrosis.  Arch Dis Child . 1991;  66 698-701
  • 87 Feigelson J, Anagnostopoulos C, Poquet M. Liver cirrhosis in cystic fibrosis-therapeutic implications and long term follow up.  Arch Dis Child . 1993;  68 653-657
  • 88 Maurage C, Lenaerts C, Weber A. Meconium ileus and its equivalent as a risk factor for the development of cirrhosis: an autopsy study in cystic fibrosis.  J Pediatr Gastroenterol Nutr . 1989;  9 17-20
  • 89 Colombo C, Battezzati P M, Strazzabosco M. Liver and biliary problems in cystic fibrosis.  Semin Liver Dis . 1998;  18 227-235
  • 90 Lindblad A, Strandvik B, Hjelte L. Incidence of liver disease in patients with cystic fibrosis and meconium ileus.  J Pediatr . 1995;  126 155-156
  • 91 Tanner M S, Taylor C J. Liver disease in cystic fibrosis.  Arch Dis Child . 1995;  72 281-284
  • 92 Williams S G, Westaby D, Tanner M S. Liver and biliary problems in cystic fibrosis.  Br Med Bull . 1992;  48 877-892
  • 93 Duthie A, Doherty D G, Donaldson P T. The major histocompatibility complex influences the development of chronic liver disease in male children and young adults with cystic fibrosis.  J Hepatol . 1995;  23 532-537
  • 94 Rohlfs E M, Shaheen N J, Silverman L M. Is the hemochromatosis gene a modifier locus for cystic fibrosis?.  Genet Test . 1998;  2 85-88
  • 95 Nagel R A, Westaby D, Javaid A. Liver disease and bile duct abnormalities in adults with cystic fibrosis.  Lancet . 1989;  2 1422-1425
  • 96 Vawter G F, Shwachman H. Cystic fibrosis in adults: an autopsy study.  Pathol Annu . 1979;  14(Part 2) 357-382
  • 97 Sokol R J, Carroll N M, Narkewicz M R, Wagener J S, Accurso F J. Liver blood tests during the first decade of life in children with cystic fibrosis identified by newborn screening.  Pediatr Pulm . 1994;  10 275
  • 98 Kovesi T, Corey M, Tsui L-C. The association between liver disease and mutations of the cystic fibrosis gene.  Pediatr Pulm . 1992;  8 244
  • 99 Lindblad A, Glaumann H, Strandvik B. Natural history of liver disease in cystic fibrosis.  Hepatology . 1999;  30 1151-1158
  • 100 Gaskin K J, Waters D LM, Howman-Giles R. Liver disease and common bile duct stenosis in cystic fibrosis.  N Engl J Med . 1988;  318 340-346
  • 101 Debray D, Lykavieris P, Gauthier F. Outcome of cystic fibrosis-associated liver cirrhosis: management of portal hypertension.  J Hepatol . 1999;  31 77-83
  • 102 Craig J M. The pathological changes in the liver in cystic fibrosis of the pancreas.  Am J Dis Child . 1957;  93 357-369
  • 103 Vlaman H B, France N E, Wallis P G. Prolonged neonatal jaundice in cystic fibrosis.  Arch Dis Child . 1971;  46 805-809
  • 104 Shapira R, Hadzic N, Francavilla R. Retrospective review of cystic fibrosis presenting as infantile liver disease.  Arch Dis Child . 1999;  81 125-128
  • 105 Roy C C, Weber A M, Morin C L. Hepatobiliary disease in cystic fibrosis: a survey of current issues and concepts.  J Pediatr Gastroenterol Nutr . 1982;  1 469-478
  • 106 Lykavieris P, Bernard O, Hadchouel M. Neonatal cholestasis as the presenting feature in cystic fibrosis.  Arch Dis Child . 1996;  75 67-70
  • 107 Colombo C, Crosignani A, Battezzati P M. Liver involvement in cystic fibrosis.  J Hepatol . 1999;  31 946-954
  • 108 Mack D R, Traystman M D, Colombo J L. Clinical denouement and mutation analysis of patients with cystic fibrosis undergoing liver transplantation for biliary cirrhosis.  J Pediatr . 1995;  127 881-887
  • 109 di Sant'Agnese A P, Blanc W A. A distinctive type of biliary cirrhosis of the liver associated with cystic fibrosis of the pancreas.  Pediatrics . 1956;  18 387-409
  • 110 Feranchak A P, Sontag M K, Wagener J S. Prospective, long-term study of fat-soluble vitamin status in children with cystic fibrosis identified by newborn screen.  J Pediatr . 1999;  135 601-610
  • 111 Willi U V, Reddish J M, Teele R L. Cystic fibrosis: its characteristic appearance on abdominal sonography.  AJR . 1980;  134 1005-1010
  • 112 Stern R C, Rothstein F C, Doershuk C F. Treatment and prognosis of symptomatic gallbladder disease in patients with cystic fibrosis.  J Pediatr Gastroenterol Nutr . 1986;  5 35-40
  • 113 Angelico M, Gandin C, Canuzzi P. Gallstones in cystic fibrosis: a critical reappraisal.  Hepatology . 1991;  14 768-775
  • 114 Colombo C, Bertolini E, Assaisso M L. Failure of ursodeoxycholic acid to dissolve radiolucent gallstones in patients with cystic fibrosis.  Acta Paediatr . 1993;  82 562-565
  • 115 Neglia J P, Fitzsimmons S C, Maisonneuve P. The risk of cancer among patients with cystic fibrosis. Cystic Fibrosis and Cancer Study Group.  N Engl J Med . 1995;  332 494-499
  • 116 Potter C J, Fishbein M, Hammond S. Can the histologic changes of cystic fibrosis-associated hepatobiliary disease be predicted by clinical criteria?.  J Pediatr Gastroenterol Nutr . 1997;  25 32-36
  • 117 Williams S G, Evanson J E, Barrett N. An ultrasound scoring system for the diagnosis of liver disease in cystic fibrosis.  J Hepatol . 1995;  22 513-521
  • 118 Patriquin H, Lenaerts C, Smith L. Liver disease in children with cystic fibrosis: US-biochemical comparison in 195 patients.  Radiology . 1999;  211 229-232
  • 119 Dogan A S, Conway J J, Lloyd-Still J D. Hepatobiliary scintigraphy in children with cystic fibrosis and liver disease.  J Nucl Med . 1994;  35 432-435
  • 120 O'Connor P J, Southern K W, Bowler I M. The role of hepatobiliary scintigraphy in cystic fibrosis.  Hepatology . 1996;  23 281-287
  • 121 Colombo C, Castellani M R, Balistreri W F. Scintigraphic documentation of an improvement in hepatobiliary excretory function after treatment with ursodeoxycholic acid in patients with cystic fibrosis and associated liver disease.  Hepatology . 1992;  15 677-684
  • 122 Hubbard A M, Meyer J S, Mahboubi S. Diagnosis of liver disease in children: value of MR angiography.  AJR . 1992;  159 617-621
  • 123 Schoenau E, Boeswald W, Wanner R. High-molecular-mass (``biliary'') isoenzyme of alkaline phosphatase and the diagnosis of liver dysfunction in cystic fibrosis.  Clin Chem . 1989;  35 1888-1890
  • 124 Rattenbury J M, Taylor C J, Heath P K. Serum glutathione S-transferase B1 activity as an index of liver function in cystic fibrosis.  J Clin Pathol . 1995;  48 771-774
  • 125 Gerling B, Becker M, Staab D. Prediction of liver fibrosis according to serum collagen VI level in children with cystic fibrosis.  N Engl J Med . 1997;  336 1611-1612
  • 126 Leonardi S, Giambusso F, Sciuto C. Are serum type III procollagen and prolyl hydroxylase useful as noninvasive markers of liver disease in patients with cystic fibrosis?.  J Pediatr Gastroenterol Nutr . 1998;  27 603-605
  • 127 Narkewicz M R, Smith D, Gregory C. Effect of ursodeoxycholic acid therapy on hepatic function in children with intrahepatic cholestatic liver disease.  J Pediatr Gastroenterol Nutr . 1998;  26 49-55
  • 128 Bianchetti M G, Kraemer R, Passweg J. Use of salivary levels to predict clearance of caffeine in patients with cystic fibrosis.  J Pediatr Gastroenterol Nutr . 1988;  7 688-693
  • 129 Heuman D M. Hepatoprotective properties of ursodeoxycholic acid.  Gastroenterology . 1993;  104 1865-1870
  • 130 Erlinger S, Dumont M. Influence of UDCA on bile secretion. In: Paumgartner G, Stiehl A, Barbara L, et al., eds. Strategies for the Treatment of Hepatobiliary Disease Dordrecht, The Netherlands: Kluwer Academic, 1990: 35-42
  • 131 Botla R, Spivey J R, Aguilar H. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection.  J Pharmacol Exp Ther . 1995;  272 930-938
  • 132 Shimokura G H, McGill J, Schlenker T. Ursodeoxycholate increases cytosolic calcium concentration and activates Cl- currents in a biliary cell line.  Gastroenterology . 1995;  109 965-972
  • 133 Calmus Y, Gane P, Rouger P. Hepatic expression of class I and class II major histocompatibility complex molecules in primary biliary cirrhosis: effect of ursodeoxycholic acid.  Hepatology . 1990;  11 12-15
  • 134 Colombo C, Battezzati P M, Podda M. Ursodeoxycholic acid for liver disease associated with cystic fibrosis: a double-blind multicenter trial.  Hepatology . 1996;  23 1484-1490
  • 135 Cotting J, Lentze M J, Reichen J. Effects of ursodeoxycholic acid treatment on nutrition and liver function in patients with cystic fibrosis and longstanding cholestasis.  Gut . 1990;  31 918-921
  • 136 Colombo C, Setchell K D, Podda M. Effects of ursodeoxycholic acid therapy for liver disease associated with cystic fibrosis.  J Pediatr . 1990;  117 482-489
  • 137 Galabert C, Montet J C, Lengrand D. Effects of ursodeoxycholic acid on liver function in patients with cystic fibrosis and chronic cholestasis.  J Pediatr . 1992;  121 138-141
  • 138 van de Meeberg C P, Houwen R H, Sinaasappel M. Low-dose versus high-dose ursodeoxycholic acid in cystic fibrosis-related cholestatic liver disease. Results of a randomized study with 1-year follow-up.  Scand J Gastroenterol . 1997;  32 369-373
  • 139 Lindblad A, Glaumann H, Strandvik B. A two-year prospective study of the effect of ursodeoxycholic acid on urinary bile acid excretion and liver morphology in cystic fibrosis-associated liver disease.  Hepatology . 1998;  27 166-174
  • 140 Lepage G, Paradis K, Lacaille F. Ursodeoxycholic acid improves the hepatic metabolism of essential fatty acids and retinol in children with cystic fibrosis.  J Pediatr . 1997;  130 52-58
  • 141 Thomas P S, Bellamy M, Geddes D. Malabsorption of vitamin E in cystic fibrosis improved after ursodeoxycholic acid.  Lancet . 1995;  346 1230-1231
  • 142 Pierro A, Koletzko B, Carnielli V. Resting energy expenditure is increased in infants and children with extrahepatic biliary atresia.  J Pediatr Surg . 1989;  24 534-538
  • 143 Ramsey B W, Farrell P M, Pencharz P. Nutritional assessment and management in cystic fibrosis: a consensus report. The Consensus Committee.  Am J Clin Nutr . 1992;  55 108-116
  • 144 Schuster S R, Shwachman H, Toyama W M. The management of portal hypertension in cystic fibrosis.  J Pediatr Surg . 1977;  12 201-206
  • 145 Berger K J, Schreiber R A, Tchervenkov J. Decompression of portal hypertension in a child with cystic fibrosis after transjugular intrahepatic portosystemic shunt placement.  J Pediatr Gastroenterol Nutr . 1994;  19 322-325
  • 146 Sanyal A J, Purdum III P P, Luketic V A. Bleeding gastroesophageal varices.  Semin Liver Dis . 1993;  13 328-342
  • 147 Stringer M D, Price J F, Mowat A P. Liver cirrhosis in cystic fibrosis.  Arch Dis Child . 1993;  69 407
  • 148 Noble-Jamieson G, Valente J, Barnes N D. Liver transplantation for hepatic cirrhosis in cystic fibrosis.  Arch Dis Child . 1994;  71 349-352
  • 149 Couetil J P, Houssin D P, Soubrane O. Combined lung and liver transplantation in patients with cystic fibrosis. A 4 1/2-year experience.  J Thorac Cardiovasc Surg . 1995;  110 1415-1422
  • 150 Dennis C M, McNeil K D, Dunning J. Heart-lung-liver transplantation.  J Heart Lung Transplant . 1996;  15 536-538
  • 151 Palmer E, Wilhelm J M, Sherman F. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics.  Nature . 1979;  277 148-150
  • 152 Bedwell D M, Kaenjak A, Benos D J. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line.  Nat Med . 1997;  3 1280-1284
  • 153 Rubenstein R C, Egan M E, Zeitlin P L. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR.  J Clin Invest . 1997;  100 2457-2465
  • 154 Rubenstein R C, Zeitlin P L. A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function.  Am J Respir Crit Care Med . 1998;  157 484-490
  • 155 Eidelman O, Guay-Broder C, van Galen J P. A1 adenosine-receptor antagonists activate chloride efflux from cystic fibrosis cells.  Proc Natl Acad Sci USA . 1992;  89 5562-5566
  • 156 Illek B, Yankaskas J, Machen T E. cAMP and genistein stimulate HCO3 - conductance through CFTR in human airway epithelia.  Am J Physiol . 1997;  272 L752-L761
  • 157 Illek B, Zhang L, Lewis N C. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein.  Am J Physiol . 1999;  277(Part 1) C833-C839
  • 158 Kelley T J, Al Nakkash L, Cotton C U. Activation of endogenous deltaF508 cystic fibrosis transmembrane conductance regulator by phosphodiesterase inhibition.  J Clin Invest . 1996;  98 513-520
  • 159 Kelley T J, Thomas K, Milgram L J. In vivo activation of the cystic fibrosis transmembrane conductance regulator mutant deltaF508 in murine nasal epithelium.  Proc Natl Acad Sci USA . 1997;  94 2604-2608
  • 160 Grubman S A, Fang S L, Mulberg A E. Correction of the cystic fibrosis defect by gene complementation in human intrahepatic biliary cell lines.  Gastroenterology . 1995;  108 584-592
  • 161 Yang Y, Raper S E, Cohn J A. An approach for treating the hepatobiliary disease of cystic fibrosis by somatic gene transfer.  Proc Nat Acad Sci USA . 1993;  90 4601-4605
  • 162 Friedman S L. Molecular mechanisms of hepatic fibrosis and principles of therapy.  J Gastroenterol . 1997;  32 424-430
  • 163 Friedman S L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury.  J Biol Chem . 2000;  275 2247-2250
  • 164 Britton R S, Bacon B R. Role of free radicals in liver diseases and hepatic fibrosis.  Hepatogastroenterology . 1994;  41 343-348
  • 165 Zhang M, Song G, Minuk G Y. Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat.  Gastroenterology . 1996;  110 1150-1155
    >