Planta Med 2001; 67(8): 685-694
DOI: 10.1055/s-2001-18365
Review
© Georg Thieme Verlag Stuttgart · New York

Antimycobacterial Plant Terpenoids

Charles L. Cantrell1,*, Scott G. Franzblau2 , Nikolaus H. Fischer3
  • 1 U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois, USA
  • 2 Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
  • 3 Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, Mississippi, USA
Further Information

Publication History

June 13, 2001

July 10, 2001

Publication Date:
09 November 2001 (online)

Abstract

Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis, is the leading killer among all infectious diseases worldwide and is responsible for more than two million deaths annually. For over thirty years no antitubercular agents with new mechanisms of action have been developed. The recent increase in the number of multi-drug resistant clinical isolates of M. tuberculosis has created an urgent need for the discovery and development of new antituberculosis leads. This review covers recent reports on plant-derived terpenoids that have demonstrated moderate to high activity in in vitro bioassays against M. tuberculosis. In this review, mono-, sesqui-, di- and triterpenes, and sterols, their structural analogs and semisynthetic derivatives will be discussed, with particular emphasis on the structural features essential for antimycobacterial activity.

References

  • 1 Dye C, Scheele S, Dolin P, Pathania V, Raviglione M C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project.  Journal of the American Medical Association. 1999;  282 677-86
  • 2 Raviglione M C, Snider D E, Jr., Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic.  Journal of the American Medical Association. 1995;  273 220-6
  • 3 Grassi C, Peona V. New drugs for tuberculosis. European Respiratory Journal.  Supplement. 1995;  20 714s-8s
  • 4 Sepkowitz K A, Raffalli J, Riley L, Kiehn T E, Armstrong D. Tuberculosis in the AIDS era.  Clinical Microbiology Reviews. 1995;  8 180-99
  • 5 Cohn D L, Bustreo F, Raviglione M C. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD Global Surveillance Project. International Union Against Tuberculosis and Lung Disease.  Clinical Infectious Diseases. 1997;  24 S121-30
  • 6 Espinal M A, Laszlo A, Simonsen L, Boulahbal F, Kim S J, Reniero A, Hoffner S, Rieder H L, Binkin N, Dye C, Williams R, Raviglione M C. Global trends in resistance to antituberculosis drugs.  New England Journal of Medicine. 2001;  344 1294-303
  • 7 Chien H P, Yu M C, Ong T F, Lin T P, Luh K T. In vitro activity of rifabutin and rifampin against clinical isolates of Mycobacterium tuberculosis in Taiwan.  Journal of the Formosan Medical Association. 2000;  99 408-11
  • 8 Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis .  Journal of Antimicrobial Chemotherapy. 1998;  42 621-8
  • 9 Matteelli A, Olliaro P, Signorini L, Cadeo G, Scalzini A, Bonazzi L, Caligaris S, Tomasoni L, Tebaldi A, Carosi G. Tolerability of twice-weekly rifabutin-isoniazid combinations versus daily isoniazid for latent tuberculosis in HIV-infected subjects: a pilot study.  International Journal of Tuberculosis and Lung Disease. 1999;  3 1043-6
  • 10 Narita M, Stambaugh J J, Hollender E S, Jones D, Pitchenik A E, Ashkin D. Use of rifabutin with protease inhibitors for human immunodeficiency virus-infected patients with tuberculosis.  Clinical Infectious Diseases. 2000;  30 779-83
  • 11 Parola D, Dell’Orso D, Giovagnoli S, Bianconi S, Terzano C. The tolerability and therapeutic efficacy of rifabutin in the treatment of pulmonary tuberculosis.  Recenti Progressi in Medicina. 1999;  90 254-7
  • 12 Sirgel F A, Botha F J, Parkin D P, Van De Wal B W, Donald P R, Clark P K, Mitchison D A. The early bactericidal activity of rifabutin in patients with pulmonary tuberculosis measured by sputum viable counts: a new method of drug assessment.  Journal of Antimicrobial Chemotherapy. 1993;  32 867-75
  • 13 Lenaerts A M, Chase S E, Chmielewski A J, Cynamon M H. Evaluation of rifapentine in long-term treatment regimens for tuberculosis in mice.  Antimicrobial Agents and Chemotherapy. 1999;  43 2356-60
  • 14 Tomioka H. Prospects for development of new antimycobacterial drugs, with special reference to a new benzoxazinorifamycin, KRM-1648.  Archivum Immunologiae et Therapiae Experimentalis. 2000;  48 183-8
  • 15 Maranetra K N. Quinolones and multidrug-resistant tuberculosis.  Chemotherapy. 1999;  45 12-8
  • 16 Sirgel F A, Botha F J, Parkin D P, Van de Wal B W, Schall R, Donald P R, Mitchison D A. The early bactericidal activity of ciprofloxacin in patients with pulmonary tuberculosis.  American Journal of Respiratory and Critical Care Medicine. 1997;  156 901-5
  • 17 Sirgel F A, Donald P R, Odhiambo J, Githui W, Umapathy K C, Paramasivan C N, Tam C M, Kam K M, Lam C W, Sole K M, Mitchison D A. A multicentre study of the early bactericidal activity of anti-tuberculosis drugs.  Journal of Antimicrobial Chemotherapy. 2000;  45 859-70
  • 18 Yew W W, Chan C K, Chau C H, Tam C M, Leung C C, Wong P C, Lee J. Outcomes of patients with multidrug-resistant pulmonary tuberculosis treated with ofloxacin/levofloxacin-containing regimens.  Chest. 2000;  117 744-51
  • 19 Gillespie S H, Billington O. Activity of moxifloxacin against mycobacteria.  Journal of Antimicrobial Chemotherapy. 1999;  44 393-5
  • 20 Ji B, Lounis N, Maslo C, Truffot-Pernot C, Bonnafous P, Grosset J. In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis .  Antimicrobial Agents and Chemotherapy. 1998;  42 2066-9
  • 21 Miyazaki E, Miyazaki M, Chen J M, Chaisson R E, Bishai W R. Moxifloxacin (BAY12 - 8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis.  Antimicrobial Agents and Chemotherapy. 1999;  43 85-9
  • 22 Cynamon M H, Klemens S P, Sharpe C A, Chase S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model.  Antimicrobial Agents and Chemotherapy. 1999;  43 1189-91
  • 23 Stover C K, Warrener P, VanDevanter D R, Sherman D R, Arain T M, Langhorne M H, Anderson S W, Towell J A, Yuan Y, McMurray D N, Kreiswirth B N, Barry C E, Baker W R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis.  Nature. 2000;  405 962-6
  • 24 Collins L, Franzblau S G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium .  Antimicrobial Agents and Chemotherapy. 1997;  41 1004-9
  • 25 Cantrell C L, Lu T, Fronczek F R, Fischer N H, Adams L B, Franzblau S G. Antimycobacterial cycloartanes from Borrichia frutescens .  Journal of Natural Products. 1996;  59 1131-6
  • 26 Cantrell C L. Antimycobacterial natural products from higher plants. Department of Chemistry Baton Rouge, LA; Louisiana State University 1998: 173 pp
  • 27 Rajab M S, Cantrell C L, Franzblau S G, Fischer N H. Antimycobacterial activity of (E)-phytol and derivatives. A preliminary structure-activity study.  Planta Medica. 1998;  64 2-4
  • 28 Fischer N H, Lu T, Cantrell C L, Castaneda-Acosta J, Quijano L, Franzblau S G. Antimycobacterial evaluation of germacranolides.  Phytochemistry. 1998;  49 559-64
  • 29 Lu T, Fischer N H. Spectral data of chemical modification products of costunolide.  Spectroscopy Letters. 1996;  29 437-48
  • 30 Cantrell C L, Nunez I S, Castaneda-Acosta J, Foroozesh M, Fronczek F R, Fischer N H, Franzblau S G. Antimycobacterial activities of dehydrocostus lactone and its oxidation products.  Journal of Natural Products. 1998;  61 1181-6
  • 31 Cantrell C L, Abate L, Fronczek F R, Franzblau S G, Quijano L, Fischer N H. Antimycobacterial eudesmanolides from Inula helenium and Rudbeckia subtomentosa .  Planta Medica. 1999;  65 351-5
  • 32 Ulubelen A, Topcu G, Johansson C B. Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity.  Journal of Natural Products. 1997;  60 1275-80
  • 33 Puyvelde L V, Ntawukiliyayo J D, Portaels F. In vitro inhibition of mycobacteria by Rwandese medicinal plants.  Phytotherapy Research. 1994;  8 65-9
  • 34 Topcu G, Erenler R, Cakmak O, Johansson C B, Celik C, Chai H -B, Pezzuto J M. Diterpenes from the berries of Juniperus excelsa .  Phytochemistry. 1999;  50 1195-9
  • 35 Wachter G A, Franzblau S G, Montenegro G, Suarez E, Fortunato R H, Saavedra E, Timmermann B N. A new antitubercular mulinane diterpenoid from Azorella madreporica Clos.  Journal of Natural Products. 1998;  61 965-8
  • 36 Cantrell C L, Rajab M S, Franzblau S G, Fronczek F R, Fischer N H. Antimycobacterial ergosterol-5,8-endoperoxide from Ajuga remota .  Planta Medica. 1999;  65 732-4
  • 37 Cantrell C L, Rajab M S, Franzblau S G, Fischer N H. Antimycobacterial triterpenes from Melia volkensii .  Journal of Natural Products. 1999;  62 546-8
  • 38 Wachter G A, Valcic S, Flagg M L, Franzblau S G, Montenegro G, Suarez E, Timmermann B N. Antitubercular activity of pentacyclic triterpenoids from plants of Argentina and Chile.  Phytomedicine. 1999;  6 341-5
  • 39 Caldwell C G, Franzblau S G, Suarez E, Timmermann B N. Oleanane triterpenes from Junellia tridens .  Journal of Natural Products. 2000;  63 1611-4
  • 40 Heifets L B, Cynamon M H. Drug susceptibility in the chemotherapy of mycobacterial infections. Boca Raton, Fla; CRC Press 1991
  • 41 Fischer N H, Mabry T J. New pseudoguianolides from Ambrosis confertiflora .  Tetrahedron. 1967;  23 2529-38
  • 42 Geissman T A, Matsueda S. Sesquiterpene lactones. Constituents of diploid and polyploid Ambrosia dumosa .  Phytochemistry. 1968;  7 1613-21
  • 43 Quijano L, Gomez-Garibay F, Trejo-B R I, Rios T. Hydroxy-bis-dihydroencelin, a dimeric eudesmanolide and other eudesmanolides from Montanoa speciosa .  Phytochemistry. 1991;  30 3293-5
  • 44 Vasquez M, Quijano L, Urbatsch L E, Fischer N H. Sesquiterpene lactones and other constituents from Rudbeckia mollis .  Phytochemistry. 1992;  31 2051-4
  • 45 Quijano L, Calderon J S, Federico Gomez G, Jesus Lopez P, Rios T, Fronczek F R. The crystal structure of 6-epi-deacetyllaurenobiolide, a germacra-1(10),4-diene-12,8-alpha-olide from Montanoa grandiflora .  Phytochemistry. 1984;  23 1971-4
  • 46 von Daehne W, Godtfredsen W O, Rasmussen P R. Structure-activity relationships in fusidic acid-type antibiotics.  Advances in Applied Microbiology. 1979;  25 95-146
  • 47 Osterberg T, Norinder U. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/logP and ACD/ChemSketch descriptors.  European Journal of Pharmaceutical Science. 2001;  12 327-37

Dr. Charles L. Cantrell

USDA, ARS

National Center for Agricultural Utilization Research

1815 North University Street

Peoria

Illinois 61604

U.S.A.

Email: cantrellc@mail.ncaur.usda.gov

Fax: +1-309-681-6686

Phone: Tel.: +1-309-681-6349

    >