Abstract
The addition of the lithium derivative of N -Boc 4-ethynyl-2,2-dimethyl-1,3-oxazolidine to tetra-O -benzyl-d -gluco- and galactonolactone and 2-azido-2-deoxy congeners afforded the corresponding
ethynyl ketoses in fairly good yields (64-78%). Following the conversion of the ketoses
into O -acetates and removal of the acetoxy group by silane reduction, the resulting β-linked
ethynyl glycosides were transformed into N -Boc C -glycosyl α-aminobutyric acids by reduction of the triple bond using H2 /Pd(OH)2 and oxidative cleavage of the oxazolidine ring using the Jones’ reagent. After the
removal of O -benzyl groups of the carbohydrate moieties by hydrogenation and the reduction of
azido to amino group, all compounds were subjected to acetylation and isolated as
O - and N -acetyl derivatives. The C -glycosyl α-amino acids prepared correspond to methylene isosteres of O -glycosyl serines.
Key words
alkynyl glycosides - glycopeptides -
C -glycosides -
C -glycosyl amino acids
References
<A NAME="RE14701SS-1">1 </A>
Dondoni A.
Marra A.
Chem. Rev.
2000,
100:
4395
<A NAME="RE14701SS-2A">2a </A>
Varki A.
Glycobiology
1993,
3:
97
<A NAME="RE14701SS-2B">2b </A>
Dwek RA.
Chem. Rev.
1996,
96:
683
<A NAME="RE14701SS-2C">2c </A>
Imperiali B.
Acc. Chem. Res.
1997,
30:
452
<A NAME="RE14701SS-2D">2d </A>
Essentials of Glycobiology
Varki A.
Cummings R.
Esko J.
Freeze H.
Hart G.
Marth J.
Cold Spring Harbor Laboratory Press;
New York:
1999.
<A NAME="RE14701SS-3A">3a </A>
Jansson AM.
Meldal M.
Bock K.
J. Chem. Soc., Perkin Trans. 1
1992,
1699
<A NAME="RE14701SS-3B">3b </A>
Matsuo I.
Isomura M.
Ajisaka K.
Tetrahedron Lett.
1999,
40:
5047
<A NAME="RE14701SS-3C">3c </A>
Seifert J.
Ogawa T.
Ito Y.
Tetrahedron Lett.
1999,
40:
6803
<A NAME="RE14701SS-4A">4a </A>
Sjölin P.
George SK.
Bergquist K.-E.
Roy S.
Svensson A.
Kihlberg J.
J. Chem. Soc., Perkin Trans. 1
1999,
1731
<A NAME="RE14701SS-4B">4b </A>
Sjölin P.
Kihlberg J.
J. Org. Chem.
2001,
66:
2957
<A NAME="RE14701SS-4C">4c </A>
Tamura J.
Nishihara J.
J. Org. Chem.
2001,
66:
3074
<A NAME="RE14701SS-5">5 </A> For recent methods not reviewed in Ref.1 see:
Nishikawa T.
Ishikawa M.
Wada K.
Isobe M.
Synlett
2001,
945
<A NAME="RE14701SS-6">6 </A> For addition of iodo-zinc reagent bearing an oxazolidinone ring to a glycal,
see:
Dorgan BJ.
Jackson RFW.
Synlett
1996,
859
<A NAME="RE14701SS-7">7 </A> For coupling of oxazolidinone ethanal with glycosyl samarium derivatives, see:
Urban D.
Skrydstrup T.
Beau J.-M.
Chem.Commun.
1998,
955
<A NAME="RE14701SS-8">8 </A> For coupling of oxazolidine silyl enol ether with glycosyltrichloroacetimidate,
see:
Dondoni A.
Marra A.
Massi A.
J. Org. Chem.
1999,
64:
933
<A NAME="RE14701SS-9">9 </A> For a detailed experimental procedure and physical and spectroscopic data of
some sugar lactones, see:
Dondoni A.
Scherrmann M.-C.
J. Org. Chem.
1994,
59:
6404
<A NAME="RE14701SS-10">10 </A>
Serrat X.
Cabarrocas G.
Rafel S.
Ventura M.
Linden A.
Villalgordo JM.
Tetrahedron: Asymmetry
1999,
10:
3417
<A NAME="RE14701SS-11A">11a </A> For the synthesis of this aldehyde from serine via a reduction-oxidation procedure
avoiding substantial racemization, see:
Dondoni A.
Perrone D.
Synthesis
1997,
527
<A NAME="RE14701SS-11B">11b </A>
Dondoni A.
Perrone D.
Org. Synth.
1999,
77:
64
<A NAME="RE14701SS-12">12 </A>
Evidently the alkyne 1 {[α]D +90 (c = 0.7, CHCl3 )} is the enantiomer of the product described in Ref.
[10 ]
which in fact was prepared starting from l -serine. Therefore the optical rotation value quoted in Ref.
[10 ]
{([α]D +88 (c = 1.05, CHCl3 )} should be changed into a negative value in agreement with earlier data from the
literature quoted in the same publication.
<A NAME="RE14701SS-13A">13a </A>
C-Glycoside Synthesis
Postema MHD.
CRC Press;
Boca Raton:
1995.
p.57-60
<A NAME="RE14701SS-13B">13b </A>
Lowary T.
Meldal M.
Helmboldt A.
Vasella A.
Bock K.
J. Org. Chem.
1998,
63:
9657
<A NAME="RE14701SS-14">14 </A>
Dondoni A.
Marra A.
Pasti C.
Tetrahedron: Asymmetry
2000,
11:
305
The anomerization free one-step transformation of the oxazolidine ring into the glycinyl
group was demonstrated in several instances in earlier work from our laboratory. See:
<A NAME="RE14701SS-15A">15a </A>
Dondoni A.
Marra A.
Massi A.
Tetrahedron
1998,
54:
2827
<A NAME="RE14701SS-15B">15b </A>
Dondoni A.
Marra A.
Massi A.
Chem. Commun.
1998,
1741
<A NAME="RE14701SS-15D">15d </A>
Dondoni A.
Mariotti G.
Marra A.
Tetrahedron Lett.
2000,
41:
3483
Dondoni A.
Giovannini PP.
Marra A.
J. Chem. Soc., Perkin Trans. 1,
2001, in press
<A NAME="RE14701SS-16">16 </A>
Marcaurelle LA.
Bertozzi CR.
J. Am. Chem. Soc.
2001,
123:
1587 ; and references cited therein
<A NAME="RE14701SS-17A">17a </A>
Jensen KJ.
Hansen PR.
Venugopal D.
Barany G.
J. Am. Chem. Soc.
1996,
118:
3148
<A NAME="RE14701SS-17B">17b </A>
Mitchell SA.
Pratt MR.
Hruby VJ.
Polt R.
J. Org. Chem.
2001,
66:
2327 ; and references therein
<A NAME="RE14701SS-18">18 </A>
Fuchss T.
Schmidt RR.
Synthesis
1998,
753
<A NAME="RE14701SS-19">19 </A>
Armarego WLF.
Perrin DD.
Purification of Laboratory Chemicals
Butterworth-Heinemann;
Oxford:
1996.
4th ed.
<A NAME="RE14701SS-20">20 </A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923