Semin Thromb Hemost 2001; 27(5): 445-464
DOI: 10.1055/s-2001-17955
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Role of Regioselectively Sulfated and Acetylated Polysaccharide Coatings of Biomaterials for Reducing Platelet and Plasma Protein Adhesion

Hanno Baumann
  • ITMC, Macromolecular Chemistry and Textile Chemistry, Hemocompatible and Biocompatible Biomaterials, Technology University of Aachen, Aachen, Germany
Further Information

Publication History

Publication Date:
22 October 2001 (online)

ABSTRACT

A brief survey is given about the role of natural polysaccharides such as heparin (HE), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS) in reducing blood coagulation and their potential use as athrombogenic coatings in the development of tailor-made athrombogenic biomaterials. Furthermore, known literature and new results about platelet adhesion on regioselectively modified polysaccharides such as HE, chitosan with HE-like functional groups, and sulfated cellulose are presented in two different perfusion systems at different shear rates. Regioselectively modified polysaccharides were tested as coatings of two polymers. The strongest influence on platelet adhesion was observed when the three regioselectively modified polysaccharides contained 6-O-sulfo- groups. No or little influence was seen with 3-O-sulfo- groups. A variable effect on platelet adhesion was found in position 2. N-sulfo- groups in HE induced a medium platelet adhesion, and O-sulfo- groups of iduronic acid moiety in HE induced none. Cellulose containing 2-O-sulfo- groups induced little platelet adhesion, and 2-N- sulfo- groups in chitosan induced a variable platelet adhesion response, depending on the N-SO3/NAc ratio. Preliminary plasma protein adhesion measurements on immobilized HE derivatives with four different fluorescence-labeled plasma proteins showed a regioselective influence with serum albumin and fibrinogen. 6-O-desulfated HE gave the strongest reduction in protein adsorption followed by N-desulfation and 2-O-desulfation; the lowest reduction was observed with 3-O-desulfation. Tailor-made athrombogenic coatings of HE should not carry high amounts of 6-O-sulfo- groups or of N-sulfo- groups. Regioselectively modified cellulose and chitosan may become suitable for tailor-made athrombogenic biomaterials when regioselective reactions are further optimized.

REFERENCES

  • 1 Palmer R MJ, Ashton D S, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine.  Nature . 1988;  33 664-666
  • 2 Weiss H J, Turitto V T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium.  Blood . 1979;  53 244-250
  • 3 Moncada S, Gryglewski R, Bunting S, Vane J R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation.  Nature . 1976;  263 663-665
  • 4 Marcus A J, Broekman M J, Weksler B B. Arachidonic acid metabolism in endothelial cells and platelets.  Ann NY Acad Sci . 1982;  401 195
  • 5 Diamond S L, Eskin S G, McIntire L V. Fluid flow stimulates tissue plasminogen activator secretion by human endothelial cells.  Science . 1989;  243 1483-1485
  • 6 Rangi G J, Mumby S M, Abbott-Brown D, Bornstein P. Thrombospondin: synthesis and secretion by cells in culture.  J Cell Biol . 1982;  195 351
  • 7 Bourin M C, Lindahl U. Functional role of the polysaccharide component of rabbit thrombomodulin proteoglycan.  Biochem J . 1990;  270 419-425
  • 8 Bourin M C, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation.  Biochem J . 1993;  289 313-330
  • 9 Esmon N L, Owen W G, Esmon C T. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C.  J Biol Chem . 1982;  257 859-864
  • 10 Baumann H, Kokott A. Surface modification of the polymers present in a polysulfone hollow fiber immodialyser by covalent binding of heparin of endothelial cell surface heparan sulfate: flow characteristic and platelet adhesion.  J Biomater Sci Polym Ed . 2000;  11 245-272
  • 11 Baumann H, Müller U, Keller R. Which glycosaminoglycans are suitable for antithrombogenic or athrombogenic coatings of biomaterials?.  <~>Part I: Basic concepts of immobilized GAGs on partially cationized cellulose membrane. Semin Thromb Hemost . 1997;  23 203-213
  • 12 Baumann H, Keller R. Which glycosaminoglycans are suitable for antithrombogenic or athrombogenic coatings of biomaterials?.  <~>Part II: Covalently immobilized endothelial cell surface heparan sulfate (ESHS) and heparin (HE) on synthetic polymers and results of animal experiments. Semin Thromb Hemost . 1997;  23 215-223
  • 13 Baumann H, Keller R, Baumann U. Development of microvascular artificial platelet inert blood vessels, basic principle and animal experiments. In: Ottenbrite R, Chiellini E, Cohn D, Migliaresi C, Sunamoto J, eds. Frontiers in Biomedical Polymer Applications, Vol 2 Lancaster: Technomic 1999: 159-174
  • 14 Baumann H, Faust V, Kokott A. Entwicklung einer multifunktionellen hämokompatiblen Beschichtung für Katheter zur Infusionstherapie und parenteralen Ernährung. In: Blank H, Stallfort H, eds. Symposium 4: Werkstoffe für die Medizintechnik, Vol. 4. Wiley VCH 1998: 195-200
  • 15 Marcum J D, Rosenberg D. The biochemistry, cell biology, and pathophysiology of anticoagulantly active heparin-like molecules of the vessel wall. In: Lane DA, Lindahl U, eds. Heparin: Chemical and Biological Properties, Clinical Applications London: Edward Arnold 1989: 275-291
  • 16 Tollefsen D M, Majerus D W, Blank M K. Heparin cofactor II purification and properties of a heparin-dependent inhibitor of thrombin in human plasma.  J Biol Chem . 1982;  257 2162-2169
  • 17 Jin L, Abrahams J P, Skinner R. The anticoagulant activation of antithrombin by heparin.  Proc Natl Acad Sci USA . 1997;  94 14683-14688
  • 18 Tollefsen D M. The interaction of glycosaminoglycans with heparin cofactor II: structure and activity of a high-affinity dermatan sulfate hexasaccharide. In: Lane DA, Björk, J, Lindahl U, eds. Heparin and Related Polysaccharides. Advances in Experimental Medicine and Biology, Vol. 313, New York: Plenum Press 1992: 167-176
  • 19 Maimone M M, Tollefsen D M. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity.  J Biol Chem . 1990;  265 18263-18271
  • 20 Gallagher J T, Lyon M. Molecular organisation and functions of heparan sulfate. In: Lane DA, Lindahl U, eds. Heparin: Chemical and Biological Properties, Clinical Applications London: Edward Arnold 1989: 135-158
  • 21 Otto V, Wolff C, Baumann H, Keller R. Entwicklung von hämokompatiblen Oberflächen durch Modifizierung von Werkstoffen mit Endothelzelloberflächen-Heparansulfat (ES-HS). In: Breme J, ed. Werkstoffwoche 96, Symposium 4: Werkstoffe für die Medizintechnik, Frankfurt: DGM Informationsgesellschaft mbH; 1996: 161-169
  • 22 Baumann H, Linssen M. Influence of plasma protein and platelet adhesion on coated biomaterials with major sequences of twenty regioselective modified N- or O-desulfated heparin/heparan derivatives. In: Chiellini E, Sumamoto J, Migliaresi C, Ottenbrite RM, Cohn D, eds. Frontiers in Biomedical Polymer Application, Biomedical Polymers and Polymer Therapeutics, Vol. 3, New York: Kluwer/Plenum; 2001: 177-193
  • 23 Huppertz B, Baumann H, Keller R. The influence of semisynthetic heparinlike molecules with regioselective varied sulfate groups covalently immobilized on polymer surface on thrombocyte adhesion. In: Ottenbrite RM, Chiellini E, Cohn D, Migliaresi C, Sunamoto J, eds. Frontiers in Biomedical Polymer Applications, Vol 2. Lancaster: Technomic 1999: 115-129
  • 24 Baumann H, Scheen H, Huppertz B, Keller R. Novel regio- and stereoselective O-6-desulfation of the glucosamine moiety of heparin with N-methylpyrrolidinone-water or N,N-dimethylformamide-water mixtures.  Carbohydr Res . 1998;  308 381-388
  • 25 Baumann H, Richter A, Klemm D, Faust V. Concepts for preparation of novel regioselective modified cellulose derivatives sulfated, aminated for hemocompatible ultrathin coatings on biomaterials.  Macromol Chem Phys . 2000;  201 1950-1962
  • 26 Baumann H, Faust V. Concepts for improved regioselectivity of O-sulfo, N-sulfo, N-acetyl and N-carboxymethylgroups in chitosan derivatives.  Carbohydr Res . 2001;  331 43-57
  • 27 Lindahl U. Biosynthesis of heparin and related polysaccharides. In: Lane DA, Lindahl U, eds. Heparin: Chemical and Biological Properties, Clinical Applications London: Edward Arnold, 1989: 159-189
  • 28 Salzman E W, Merrill E W, Kent K C. Interaction of blood with artificial surfaces. In: Colman RW, Hirsch J, Marder VJ, Salzman EW, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd ed Philadelphia: Lippincott 1994: 1469-1485
  • 29 Colman R W, Marder V J, Salzman E W, Hirsch J. Plasma coagulation factors. In: Colman RW, Hirsch J, Marder VJ, Salzman EW, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd ed Philadelphia: Lippincott 1994: 3-18
  • 30 Casu B, Johnson E A, Forster M J. Correlation between structure, fat-clearing and anticoagulant properties of heparin and heparan sulphates.  Arzneimittelforschung/Drug Res . 1983;  33 136-142
  • 31 Takano R, Ye Z, Van Ta T. Specific 6-O-desulfation of heparin.  Carbohydr Lett . 1998;  3 71-77
  • 32 Engvall E, Ruoslathi E. Binding of soluble form of fibroblast surface protein, fibronectin to collagen.  Int J Cancer . 1977;  20 1-5
  • 33 Maeda H, Ishida N, Kawauchi H, Tuzimura K. Reaction of fluorescein-isothiocyanate with proteins and amino acids.  J Biol Biochem . 1969;  65 777-783
  • 34 Faraday N, Soldsomidt-Clermont P, Diso V, Bray P F. Quantitation of soluble fibrinogen binding to platelets by fluorescence-activated flow cytometry.  J Lab Clin Med . 1994;  123 728-740
  • 35 Miekka S I, Ingham K C. Influence of hetero-association on the precipitation of proteins by poly(ethylene) glycol.  Arch Biochem Biophys . 1980;  203 630-641
  • 36 Baumann H, Keller R, Ruzicka E. Partially cationized cellulose for non-thrombogenic membrane in the presence of heparin and endothelial-cell-surface-heparan sulfate (ES-HS).  J Membr Sci . 1991;  61 253-268
  • 37 Sakariassen K S, Aarts P M M A, de Groot G P, Houdijk W PM, Sixma J J. A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix and purified components.  J Lab Clin Med . 1983;  102 522-535
  • 38 Jaseja M, Rey R N, Perlin A S. Novel regio- and stereoselective modifications of heparin in alkaline solution; nuclear magnetic resonance spectroscopy evidence.  Can J Chem . 1989;  67 1449-1456
  • 39 Uchiyama H, Nagasawa K. Changes in the structure and biological property of N-O sulfotetransferred, N-resulfated heparin.  J Biol Chem . 1991;  266 6756-6760
  • 40 Inoue Y, Nagasawa K. Selective N-desulfation of heparin with dimethylsulfoxide containing water or methanol.  Carbohydr Res . 1976;  46 87-95
  • 41 Ogamo A, Metori A, Uchiyama H, Nagasawa K. Reactivity toward chemical sulfation of hydroxylgroups of heparin.  Carbohydr Res . 1989;  193 165-172
  • 42 Walsh P N, Griffin J H. Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI.  Blood . 1981;  57 106-118
  • 43 Schmaier A H, Smith P M, Purdon A D, White J G, Colman R W. High molecular weight kininogen: Localization in the unstimulated and activated platelet and activation by a platelet calpain(s).  Blood . 1986;  67 119-130
  • 44 Scully M F, Weerasinghe K, Kakkar V V. Inhibition of contact activation by platelet factor 4.  Thromb Res . 1980;  20 461-466
  • 45 Baier R E, Depalma V A, Goupil D W, Cohen E. Human platelet spreading on substrata of known surface chemistry.  J Biomed Mater Res . 1985;  19 1157-1167
  • 46 Zucker M B, Vroman L. Platelet adhesion induced by fibrinogen adsorbed onto glass.  Proc Soc Exp Biol Med . 1969;  131 318-320
  • 47 Packham M A, Evans G, Glynn M F. Effect of plasma proteins on interaction of platelets with glass surfaces.  J Lab Clin Med . 1969;  73 686-697
  • 48 Hynes R O. Integrins: A family of cell surface receptors.  Cell . 1987;  48 549-554
  • 49 Charo I F, Kieffer N, Phillips D R. Platelet membrane glycoproteins. In: Colman RW, Hirsh J, Marder VJ, Salzman EW, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd ed Philadelphia: Lippincott 1994: 489-507
  • 50 Doolittle R F, Watt K WK, Cottrell B A. The amino acid sequence of the α-chain of human fibrinogen.  Nature . 1979;  280 464-468
  • 51 Kloczewiak M, Timmons S, Lukas T J, Hawiger J. Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxyterminal segment of the γ chain.  Biochemistry . 1984;  23 1767-1774
  • 52 Baumgartner H R. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi.  Microvasc Res . 1973;  5 167-179
  • 53 Turitto V T, Baumgartner H R. Initial deposition of platelets and fibrin on vascular surface in flowing blood. In: Colmann WR, Hirsh J, Marder VJ, Salzman EW, eds. Hemostasis and Thrombosis, Basic Principles and Clinical Practice, 3rd ed Philadelphia: Lippincott 1994: 805-822
  • 54 Scully M F, Ellis V, Seno N, Kakkar V V. The anticoagulant properties of mast cell product, chondroitin sulphate E.  Biochem Biophys Res Commun. 198;  6137 15-22
  • 55 Salzman E W, Merrill E W, Binder A. Protein-platelet interaction on heparinized surfaces.  J Biomed Mater Res . 1969;  3 69-81
  • 56 Brash L J, Wojcieckowski P. Interfacial Phenomena and Bioproducts.  New York: Marcel Dekker; 1996
  • 57 Baumann H, Jerg R, Keller R, Baumann U. Domain structure of endothelial cell surface heparan sulfate (ESHS).  Int J Exp Pathol . 1993;  75 A73
  • 58 Hojima V, Cochrane C, Wiggins R C. In vitro activation of the contact (Hageman factor) system of plasma by heparin and chondroitin sulfate E.  Blood . 1984;  63 1453-1459
  • 59 Vroman L, Adams A L. Identification of rapid changes of plasma-solid interfaces.  J Biomed Mater Res . 1969;  3 43-67
  • 60 Vroman L, Adams A L, Fischer G L, Munoz P L. Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma interfaces.  Blood . 1980;  55 156-159
  • 61 Brash J L, Scott C F, ten Hove P. Mechanism of transient adsorption of fibrinogen from plasma to solid surfaces. Role of the contact and fibrinolytic system.  Blood . 1988;  71 932-939
    >