Horm Metab Res 2001; 33(10): 602-607
DOI: 10.1055/s-2001-17907
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Visceral Fat is a Determinant of PAI-1 Activity in Diabetic and Non-Diabetic Overweight and Obese Women

I. Mertens1 , M. van der Planken2 , B. Corthouts3 , M. Wauters1 , F. Peiffer1 , I. De Leeuw1 , L. van Gaal1
  • 1 Department of Endocrinology, Metabolism and Clinical Nutrition, University Hospital Antwerp, Faculty of Medicine, University of Antwerp (UA), Belgium
  • 2 Department of Hematology, University Hospital Antwerp, Faculty of Medicine, University of Antwerp (UA), Belgium
  • 3 Department of Radiology, University Hospital Antwerp, Faculty of Medicine, University of Antwerp (UA), Belgium
Further Information

Publication History

Publication Date:
18 October 2001 (online)

Plasminogen activator inhibitor type 1 (PAI-1), an inhibitor of fibrinolysis and an important and independent cardiovascular risk factor, has been shown to be elevated in obesity and type 2 diabetes. Recent study results have suggested that adipose tissue - visceral fat in particular - could play an important role in the fibrinolytic process.

In order to assess the specific role of this fat distribution, we measured PAI-1 activity (AU/ml) and visceral fat (CT-scan at level L4-L5) in 2 groups of 30 overweight and obese diabetic and overweight and obese non-diabetic women. Subjects were matched for age, weight, body mass index, fat mass and total abdominal fat. Visceral adipose tissue and PAI-1 were significantly higher in diabetic women (p = 0.022 and p = 0.004 respectively) than in non-diabetic patients. Visceral fat correlated significantly with PAI-1 activity, even after correction for insulin and triglycerides (r = 0.28, p = 0.034). Stepwise regression analysis showed visceral fat as the most important determinant factor for PAI-1 in the whole group and in the non-diabetic group. In the diabetic group, fasting insulin was the most important determinant. These results show that visceral fat is more important than BMI or total body fat in the determination of PAI-1 levels. Furthermore, the increased amount of visceral fat in type 2 diabetics may contribute to the increase of PAI-1 activity levels and the subsequent increased risk for thrombovascular disease, regardless of BMI and total fatness.

References

  • 1 Nathan D M, Meigs J, Singer D E. The epidemiology of cardiovascular disease in type 2 diabetes mellitus: how sweet it is … or is it?.  Lancet. 1997;  350 (Suppl. 1) 4-9
  • 2 Hubert H B, Feinleib M, McNamara P M, Castelli W P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study.  Circulation. 1983;  67 968-977
  • 3 Gray R P, Yudkin J S, Patterson D L. Plasminogen activator inhibitor: a risk factor for myocardial infarction in diabetic patients.  Br Heart J. 1993;  69 228-232
  • 4 Juhan-Vague I, Alessi M C. PAI-1, obesity, insulin resistance and risk of cardiovascular events.  Thromb Haemost. 1997;  78 656-660
  • 5 Hamsten A, de Faike U, Walldius G, Dahlen G, Szamosi A, Blombäck M, De Faire U, Dahlén G, Landou C, Wiman B. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction.  Lancet. 1987;  2 3-9
  • 6 Juhan-Vague I, Thompson S G, Jespersen J, on behalf of the ECAT Angina Pectoris Study Group. Involvement of the hemostatic system in the insulin resistance syndrome.  Arterioscler Thromb. 1993;  13 1865-1873
  • 7 Salomaa V, Stinson V, Kark J D, Folsom A R, Davis C E, Wu K K. Association of fibrinolytic parameters with early atherosclerosis. The ARIC study.  Circulation. 1995;  91 284-290
  • 8 Schneiderman J, Sawdey M S, Keeton M R, Bordin G M, Bernstein E F, Dilley R B, Loskutoff D J. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries.  Proc Natl Acad Sci USA. 1992;  89 6998-7002
  • 9 Lupu F, Bergonzelli G E, Heim D A, Cousin E, Genton C Y, Bachmann F, Kruithof E KO. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries.  Arterioscler Thromb. 1993;  13 1090-1100
  • 10 Vague P, Juhan-Vague I, Chabert V, Alessi M C, Atlan C. Fat distribution and plasminogen activator inhibitor activity in nondiabetic obese women.  Metabolism. 1989;  38 913-915
  • 11 Andersen P, Seljeflot I, Abdelnoor M, Arnesen H, Dale P O, Løvik A, Birkeland K. Increased insulin sensitivity and fibrinolytic capacity after dietary intervention in obese women with polycystic ovary syndrome.  Metabolism. 1995;  44 611-616
  • 12 Vague P, Juhan-Vague I, Alessi M C, Badier C, Valadier J. Metformin decreases the high plasminogen activator inhibition capacity, plasma insulin and triglyceride levels in non-diabetic obese subjects.  Thromb Haemost. 1987;  57 326-328
  • 13 Kruszynska Y T, Yu J G, Olefsky J M, Sobel B E. Effects of troglitazone on blood concentrations of plasminogen activator inhibitor 1 in patients with type 2 diabetes and in lean and obese normal subjects.  Diabetes. 2000;  49 633-639
  • 14 Lundgren C H, Brown S L, Nordt T K, Sobel B E, Fujii S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenic link between obesity and cardiovascular disease.  Circulation. 1996;  93 106-110
  • 15 Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity.  Nature Medicine. 1996;  2 800-803
  • 16 Eriksson P, Reynisdottir S, Lönnqvist F, Stemme V, Hamsten A, Arner P. Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals.  Diabetologia. 1998;  41 65-71
  • 17 Cigolini M, Tonoli M, Borgato L, Frigotto L, Manzato F, Zeminian S, Cardinale C, Camin M, Chiaramonte E, De Sandre G, Lunardi C. Expression of plasminogen activator inhibitor-1 in human adipose tissue: a role for TNF-α?.  Atherosclerosis. 1999;  143 81-90
  • 18 Sawdey M S, Loskutoff D J. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-α, and transforming growth factor-β.  J Clin Invest. 1991;  88 1346-1353
  • 19 Samad F, Yamamoto K, Loskutoff D J. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-α and lipopolysaccharide.  J Clin Invest. 1996;  97 37-46
  • 20 Alessi M C, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue. Possible link between visceral fat accumulation and vascular disease.  Diabetes. 1997;  46 860-867
  • 21 Morange P E, Alessi M C, Verdier M, Casanova D, Magalon G, Juhan-Vague I. PAI-1 produced ex vivo by human adipose tissue is relevant to PAI-1 blood level.  Arterioscler Thromb Vasc Biol. 1999;  19 1361-1365
  • 22 Ohlson L O, Larsson B, Svärdsudd K, Welin L, Eriksson H, Wilhelmsen L, Björntorp P, Tibblin G. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913.  Diabetes. 1985;  34 1055-1058
  • 23 Chan J M, Rimm E B, Colditz G A, Stampfer M J, Willett W C. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men.  Diabetes Care. 1994;  17 961-969
  • 24 Boyko E J, Fujimoto W Y, Leonetti D L, Newell-Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans.  Diabetes Care. 2000;  23 465-471
  • 25 Alberti K G, Zimmet P Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation.  Diabetic Med. 1998;  15 539-553
  • 26 Lukaski H C, Johnson P E, Bolonchuk W W, Lykken G I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body.  Am J Clin Nutr. 1985;  41 810-817
  • 27 Deurenberg P, Weststrate J A, Hautvast J G. Changes in fat-free mass during weight loss measured by bioelectrical impedance and by densitometry.  Am J Clin Nutr. 1989;  49 33-36
  • 28 van der Kooy K, Seidell J C. Techniques for the measurement of visceral fat: a practical guide.  Int J Obes. 1993;  17 187-196
  • 29 Shuman W P, Morris L L, Leonetti D L, Wahl P W, Moceri V M, Moss A A, Fujimoto W Y. Abnormal body fat distribution detected by computed tomography in diabetic men.  Invest Radiol. 1986;  21 483-487
  • 30 Gray D S, Fujioka K, Colletti P M, Kim H, Devine W, Cuyegkeng T, Pappas T. Magnetic-resonance imaging used for determining fat distribution in obesity and diabetes.  Am J Clin Nutr. 1991;  54 623-627
  • 31 Enzi G, Gasparo M, Biondetti P R, Fiore D, Semisa M, Zurlo F. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography.  Am J Clin Nutr. 1986;  44 739-746
  • 32 Mansfield M W, Catto A J, Carter A M, Grant P J. Fibrinolytic measurements in type 2 diabetic patients with acute cerebral infarction.  Diabet Med. 1998;  15 953-957
  • 33 Avellone G, Di Garbo V, Cordova R, Rotolo G, Abruzzese G, Raneli G, De Simone R, Bompiani G D. Blood coagulation and fibrinolysis in obese NIDDM patients.  Diabetes Res. 1994;  25 85-92
  • 34 McGill J B, Schneider D J, Arfken C L, Lucore C L, Sobel B E. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients.  Diabetes. 1994;  43 104-109
  • 35 Gough S C, Rice P J, McCormack L, Chapman C, Grant P J. The relationship between plasminogen activator inhibitor-1 and insulin resistance in newly diagnosed type 2 diabetes mellitus.  Diabetic Med. 1993;  10 638-642
  • 36 Jokl R, Laimins M, Klein R L, Lyons T J, Lopes-Virella M F, Colwell J A. Platelet plasminogen activator inhibitor 1 in patients with type II diabetes.  Diabetes Care. 1994;  17 818-823
  • 37 Morishita E, Asakura H, Jokaji H, Saito M, Uotani C, Kumabashiri I, Yamazaki M, Aoshima K, Hashimoto T, Matsuda T. Hypercoagulability and high lipoprotein (a) levels in patients with type II diabetes mellitus.  Atherosclerosis. 1996;  120 7-14
  • 38 Ito Y, Okeda T, Sato Y, Ito M, Sakata T. Plasminogen activator inhibitor-1 in nonobese subjects with non-insulin-dependent diabetes mellitus.  PSEBM. 1996;  211 287-291
  • 39 Bastard J P, Bruckert E, Robert J J, Ankri A, Grimaldi A, Jardel C, Hainque B. Are free fatty acids related to plasma plasminogen activator inhibitor 1 in android obesity?.  Int J Obes. 1995;  19 836-838
  • 40 Cigolini M, Targher G, Bergamo Andreis I A, Tonoli M, Agostino G, De Sandre G. Visceral fat accumulation and its relation to plasma hemostatic factors in healthy men.  Arterioscler Thromb Vasc Biol. 1996;  16 368-374
  • 41 Janand-Delenne B, Chagnaud C, Raccah D, Alessi M C, Juhan-Vague I, Vague P. Visceral fat as a main determinant of plasminogen activator inhibitor 1 level in women.  Int J Obes. 1998;  22 312-317
  • 42 Giltay E J, Elbers J M, Gooren L J, Emeis J J, Kooistra T, Asscheman H, Stehouwer C D. Visceral fat accumulation is an important determinant of PAI-1 levels in young, nonobese men and women. Modulation by cross-sex hormone administration.  Arterioscler Thromb Vasc Biol. 1998;  18 1716-1722
  • 43 Kockx M, Leenen R, Seidell J, Princen H M, Kooistra T. Relationship between visceral fat and PAI-1 in overweight men and women before and after weight loss.  Thromb Haemost. 1999;  82 1490-1496
  • 44 Halleux C M, Declerck P J, Tran S L, Detry R, Brichard S M. Hormonal control of plasminogen activator inhibitor-1 gene expression and production in human adipose tissue: stimulation by glucocorticoids and inhibition by catecholamines.  J Clin Endocrinol Metab. 1999;  84 4097-4105
  • 45 Gottschling-Zeller H, Birgel M, Röhrig K, Hauner H. Effect of tumor necrosis factor alpha and transforming growth factor beta 1 on plasminogen activator inhibitor-1 secretion from subcutaneous and omental human fat cells in suspension culture.  Metabolism. 2000;  49 666-671
  • 46 Sakamoto T, Woodcock-Mitchell J, Marutsuka K, Mitchell J J, Sobel B E, Fujii S. TNF-α and insulin, alone and synergistically, induce plasminogen activator inhibitor-1 expression in adipocytes.  Am J Physiol. 1999;  276 C1391-1397
  • 47 Birgel M, Gottschling-Zeller K, Röhrig K, Hauner H. Role of cytokines in the regulation of plasminogen activator inhibitor-1 expression and secretion in newly differentiated subcutaneous human adipocytes.  Arterioscler Thromb Vasc Biol. 2000;  20 1682-1687
  • 48 Morange P E, Aubert J, Peiretti F, Lijnen H R, Vague P, Verdier M, Négrel R, Juhan-Vague I, Alessi M C. Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue.  Diabetes. 1999;  48 890-895
  • 49 Gottschling-Zeller H, Aprath I, Skurk T, Hauner H. Beta-Adrenoceptor agonists and other cAMP elevating agents suppress PAI-1 production of human adipocytes in primary culture.  Horm Metab Res. 2000;  32 509-514
  • 50 Hotamisligil G S, Shargill N S, Spiegelman B M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance.  Science. 1993;  259 87-91
  • 51 Bastard J P, Piéroni L, Hainque B. Relationship between plasma plasmiogen activator inhibitor 1 and insulin resistance.  Diabetes Metab Res Rev. 2000;  16 192-201
  • 52 van Harmelen V, Wahrenberg H, Eriksson P, Arner P. Role of gender and genetic variance in plasminogen activator inhibitor-1 secretion from human adipose tissue.  Thromb Haemost. 2000;  83 304-308
  • 53 Mussoni L, Mannucci L, Sirtori M, Camera M, Maderna P, Sironi L, Tremoli E. Hypertriglyceridemia and regulation of fibrinolytic activity.  Arterioscler Thromb. 1992;  12 19-27
  • 54 Sakamoto T, Woodcock-Mitchell J, Fujii S, Sobel B E, Schneider D J. Augmentation of expression of plasminogen activator inhibitor type-1 in adipocytes and its potential role in acceleration of vasculopathy associated with obesity.  Circulation. 1997;  96 (Suppl. 1) I-546 (Abstract)
  • 55 Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia.  Arterioscler Thromb Vasc Biol. 1998;  18 20-26
  • 56 Bastard J P, Vidal H, Jardel C, Bruckert E, Robin D, Vallier P, Blondy P, Turpin G, Forest C, Hainque B. Subcutaneous adipose tissue expression of plasminogen activator inhibitor-1 gene during very low calorie diet in obese subjects.  Int J Obes. 2000;  24 70-74
  • 57 Crandall D L, Groeling T M, Busler D E, Antrilli T M. Release of PAI-1 by human preadipocytes and adipocytes independent of insulin and IGF-1.  Biochem Biophys Res Commun. 2000;  279 984-988
  • 58 Maiello M, Boeri D, Podesta F, Cagliero E, Vichi M, Odetti P, Adezati L, Lorenzi M. Increased expression of tissue plasminogen activator and its inhibitor and reduced fibrinolytic potential of human endothelial cells cultured in elevated glucose.  Diabetes. 1992;  41 1009-1015
  • 59 Auwerx J, Bouillon R, Collen D, Geboers J. Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus.  Arteriosclerosis. 1988;  8 68-72
  • 60 Vukovich T, Proidl S, Knöbl P, Teufelsbauer H, Schnack C, Schernthaner G. The effect of insulin treatment on the balance between tissue plasminogen activator and plasminogen activator inhibitor-1 in type 2 diabetic patients.  Thromb Haemost. 1992;  68 253-256

Prof. Dr. L. Van Gaal

Department of Endocrinology,
Metabolism and Clinical Nutrition
University Hospital Antwerp

Wilrijkstraat 10
2650 Edegem-Antwerp
Belgium


Phone: + 32 (3) 821-32-75

Fax: + 32 (3) 825-49-80

Email: luc.van.gaal@uza.be

    >