Zusammenfassung
Fragestellung: Stoßwellen und fokussierter Ultraschall können unterschiedliche Effekte im Gewebe
hervorrufen. In experimentellen Studien konnte gezeigt werden, dass hochenergetische
akustische Energie auch ein Potential für die Anwendung im Bereich der Transfektion,
Gentherapie und Genregulation hat. Dabei spielt neben der Kavitation auch die Erzeugung
sonochemischer Effekte eine Rolle. Das Ziel dieser Studie war es, mittels des Comet
Assay die Auswirkung von fokussiertem Ultraschall (FOKUS) und Stoßwellen auf die DNA-Morphologie
zu untersuchen.
Material und Methodik: Polyurethanröhrchen mit einer Zellsuspension des Dunning R3327 Prostata Adenokarzinoms
(Sublinie MatLu) wurden in entgastes Wasser bei 37 °C versenkt und mit Stoßwellen
beziehungsweise mit FOKUS unterschiedlicher Intensität behandelt. Es wurden Proben
mit und ohne Wasser-Luft-Grenze eingesetzt. Die Zellen der Positivkontrolle wurden
mit H2 O2 (0,15 %) inkubiert. Unmittelbar nach der Behandlung wurde der Comet Assay durchgeführt.
Ergebnisse: Für die Erfassung unterschiedlicher Grade von DNA-Schädigung wurde der Olive Tail
Moment (Olive TM) als Standardparameter benutzt. Die Mittelwerte der Olive TMs waren
sowohl in der Positivkontrolle als auch in allen Behandlungsproben signifikant höher
als der Mittelwert der Negativkontrolle, was einer signifikant höheren DNA-Schädigung
entspricht. Die Anwesenheit einer Wasser-Luft-Grenze produzierte signifikant mehr
Strangbrüche.
Schlussfolgerung: Diese Studie hat gezeigt, dass akustische Energie in vitro signifikante DNA-Schäden
in malignen Zellen erzeugen kann. Aufgrund bisheriger Untersuchungen und der langjährigen
klinischen Erfahrung kann jedoch davon ausgegangen werden, dass die induzierten Schäden
von den zelleigenen Reparaturmechanismen behoben werden. Gegenwärtig wird untersucht,
ob der hier beobachtete Effekt therapeutisch zunutze gemacht werden kann, indem man
die Ultraschallbehandlung maligner Tumoren mit der Applikation eines Reparaturhemmstoffes
kombiniert.
Abstract
Purpose: Ultrasound shockwaves and high intensity, focused ultrasound (HIFU) can induce various
effects in tissue. Experimental studies have shown that acoustic energy has a potential
for use in transfection, gene therapy and regulation. Next to cavitation, sonochemical
effects play an important role. The goal of this study was to examine the influence
of shockwaves and HIFU on DNA morphology.
Materials and Methods: Polyurethane tubes filled with a suspension of the MatLu R3327 Dunning prostate adenocarcinoma
were immersed in 37 °C warm, degassed water. Shockwaves and HIFU of varying intensity
were applied. Different probes with and without water-air borderline served the examination
of cavitation effects. An equivalent cell solution was incubated with H2 O2 (0.15 %) as a positive control. Immediately after treatment, the Comet Assay was
applied.
Results: The Olive Tail Moment (Olive TM) was used as standard parameter of DNA damage. The
means of the Olive TMs were in both positive control and treatment groups significantly
higher than in the negative control, corresponding to a significantly higher DNA damage.
The presence of a water-air borderline produced significantly more strandbreaks.
Conclusions: This study has proved that acoustic energy can induce a significant amount of DNA
damage in malignant cells in vitro. Based on earlier studies and clinical experience,
however, it can be assumed that this damage can be repaired by the cells’ own repair
mechanisms. We are presently examining the possibility of using the effect described
here therapeutically by combining the treatment of malignant cells by ultrasound with
the application of a repair inhibitor.
Key words:
DNA - Focused ultrasound - Shockwave - Comet assay
Literatur
1
Abdel-Salam Y, Budair Z, Renner C, Frede T, Rassweiler J, El-Annany F ,. et al .
Treatment of Peyronie’s disease by extracorporeal shockwave therapy: evaluation of
our preliminary results.
J Endourol.
1999;
13 (8)
549-552
2
Lebret T, Herve J M, Lugagne P M, Barre P, Orsini J L, Butreau M ,. et al .
[Extra-corporeal lithotripsy in the treatment of Peyronie’s disease. Use of a standard
lithotriptor (Multiline Siemens) on „young” (less then 6 months old) plaques]. Discussion
70 - 71.
Prog Urol.
2000;
10 (1)
65-70
3
Madersbacher S, Schatzl G, Djavan B, Stulnig T, Marberger M.
Long-term outcome of transrectal high- intensity focused ultrasound therapy for benign
prostatic hyperplasia [In Process Citation].
Eur Urol.
2000;
37 (6)
687-694
4
Hegarty N J, Fitzpatrick J M.
High intensity focused ultrasound in benign prostatic hyperplasia.
Eur J Ultrasound.
1999;
9 (1)
55-60
5
Beerlage H P, Thuroff S, Debruyne F M, Chaussy C, de la Rosette J J.
Transrectal high-intensity focused ultrasound using the Ablatherm device in the treatment
of localized prostate carcinoma.
Urology.
1999;
54 (2)
273-277
6
Chapelon J Y, Ribault M, Vernier F, Souchon R, Gelet A.
Treatment of localised prostate cancer with transrectal high intensity focused ultrasound.
Eur J Ultrasound.
1999;
9 (1)
31-38
7
Chapelon J Y, Margonari J, Vernier F, Gorry F, Ecochard R, Gelet A.
In vivo effects of high-intensity ultrasound on prostatic adenocarcinoma Dunning R3327.
Cancer Res.
1992;
52 (22)
6353-6357
8
Yang R, Reilly C R, Rescorla F J, Faught P R, Sanghvi N T, Fry F J,. et al .
High-intensity focused ultrasound in the treatment of experimental liver cancer. Discussion
1009 - 1010.
Arch Surg.
1991;
126 (8)
1002-1009
9
Gelet A, Chapelon J Y, Bouvier R, Pangaud C, Lasne Y.
Local control of prostate cancer by transrectal high intensity focused ultrasound
therapy: preliminary results.
J Urol.
1999;
161 (1)
156-162
10
Hill C R, ter Haar G R.
Review article: high intensity focused ultrasound-potential for cancer treatment.
Br J Radiol.
1995;
68 (816)
1296-1303
11
Adams J B, Moore R G, Anderson J H, Strandberg J D, Marshall F F, Davoussi L R.
High-intensity focused ultrasound ablation of rabbit kidney tumors.
J Endourol.
1996;
10 (1)
71-75
12
Ashush H, Rozenszajn L A, Blass M, Barda-Saad M, Azimov D, Radnay J ,. et al .
Apoptosis induction of human myeloid leukemic cells by ultrasound exposure.
Cancer Res.
2000;
60 (4)
1014-1020
13
Madersbacher S, Grobl M, Kramer G, Dirnhofer S, Steiner G E, Marberger M.
Regulation of heat shock protein 27 expression of prostatic cells in response to heat
treatment.
Prostate.
1998;
37 (3)
174-181
14
Bao S, Thrall B D, Gies R A, Miller D L.
In vivo transfection of melanoma cells by lithotripter shock waves.
Cancer Res.
1998;
58 (2)
219-221
15
Lauer U, Burgelt E, Squire Z, Messmer K, Hofschneider P H, Gregor M ,. et al .
Shock wave permeabilization as a new gene transfer method.
Gene Ther.
1997;
4 (7)
710-715
16
Michel M S, Erben P, Steidler A, Köhrmann K U, Alken P, Siegsmund M.
Cancer cell transfection by extracorporeal acustical energy: a new method for gene
therapy.
Eur Urol.
2000;
37 (2)
148
17
Bird N C, Stephenson T J, Ross B, Johnson A G.
Effects of piezoelectric lithotripsy on human DNA.
Ultrasound Med Biol.
1995;
21 (3)
399-403
18
Miller D L, Thomas R M.
The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotripter
shock waves in vitro.
Ultrasound Med Biol.
1996;
22 (5)
681-687
19
Speit G, Hanelt S, Helbig R, Seidel A, Hartmann A.
Detection of DNA effects in human cells with the comet assay and their relevance for
mutagenesis.
Toxicol Lett.
1996;
88 (1 - 3)
91-98
20
Klaude M, Eriksson S, Nygren J, Ahnstrom G.
The comet assay: mechanisms and technical considerations.
Mutat Res.
1996;
363 (2)
89-96
21
Plappert U, Raddatz K, Roth S, Fliedner T M.
DNA-damage detection in man after radiation exposure - the comet assay - its possible
application for human biomonitoring.
Stem Cells.
1995;
13 Suppl 1
215-222
22
Tennant T R, Kim H, Sokoloff M, Rinker-Schaeffer C W.
The Dunning model.
Prostate.
2000;
43 (4)
295-302
23
Peschke P, Hahn E W, Wenz F, Lohr F, Braunschweig F, Wolber G ,. et al .
Differential sensitivity of three sublines of the rat Dunning prostate tumor system
R3327 to radiation and/or local tumor hyperthermia.
Radiat Res.
1998;
150 (4)
423-430
24
Donald C D, Montgomery D E, Emmett N, Cooke D B, 3rd.
Invasive potential and substrate dependence of attachment in the dunning R-3327 rat
prostate adenocarcinoma model.
Invasion Metastasis.
1998;
18 (4)
165-175
25
Riesz P, Kondo T.
Free radical formation induced by ultrasound and its biological implications.
Free Radic Biol Med.
1992;
13 (3)
247-270
26
Speit G, Hartmann A.
The contribution of excision repair to the DNA effects seen in the alkaline single
cell gel test (comet assay).
Mutagenesis.
1995;
10 (6)
555-559
27
Wasan E K, Reimer D L, Bally M B.
Plasmid DNA is protected against ultrasonic cavitation-induced damage when complexed
to cationic liposomes.
J Pharm Sci.
1996;
85
427-433
Dr. med. M. S. Michel
Urologische Klinik, Universitätsklinikum Mannheim
Theodor-Kutzer-Ufer 1
68135 Mannheim
Telefon: 0621-383-2235
Fax: 0621-383-3822
eMail: maurice-stephan.michel@uro.ma.uni-heidelberg.de