Horm Metab Res 2001; 33(6): 358-360
DOI: 10.1055/s-2001-15421
Original Clinical

© Georg Thieme Verlag Stuttgart · New York

Effect of Glycine on Insulin Secretion and Action in Healthy First-Degree Relatives of Type 2 Diabetes Mellitus Patients

M. González-Ortiz1 , R. Medina-Santillán2 , E. Martínez-Abundis1 , C.  Reynoso von Drateln1
  • 1 Medical Research Unit in Clinical Epidemiology, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
  • 2 High Medicine School, Polytechnic National Institute, Mexico, D.F., Mexico
Further Information

Publication History

Publication Date:
31 December 2001 (online)

The aim of this study was to identify the effect of glycine on insulin secretion and action in healthy first-degree relatives of Type 2 diabetes mellitus patients. A randomized, double-blind, placebo-controlled clinical trial was performed in 12 healthy, non-obese volunteers who were first-degree relatives of Type 2 diabetes mellitus patients. Six volunteers received a morning dose of glycine 5 g orally and the other six received placebo. At baseline without drugs and after pharmacological intervention, a metabolic profile and, to assess insulin secretion and action, a hyperglycemic-hyperinsulinemic clamp study were performed. There were no significant differences in baseline metabolic profile, insulin secretion or action between groups. Changes from baseline of early (p < 0.05), late (p < 0.05), and total insulin (p < 0.02) responses were higher in the glycine group than in controls. There were no significant differences in the changes from baseline of insulin action between groups. In conclusion, a morning dose of glycine 5 g orally increased early, late and total insulin responses without changes in insulin action in healthy first-degree relatives of Type 2 diabetes mellitus patients.

References

  • 1 Cook D L, Taborsky G J. ß-cell function and insulin secretion. In: Porte D, Sherwin RS (eds). Diabetes Mellitus, 5th ed.  Connecticut:; Appleton & Lange, 1997: 49-73
  • 2 Groff J L, Gropper S S. Advanced nutrition and human metabolism, 3rd ed.  Belmont, Ca, USA:; Wadsworth/Thomson Learning, 1999: 163-244
  • 3 Perseguin G, Ghosh S, Gerow K, Shulman G I. Metabolic defects in lean nondiabetic offspring of NIDDM parents. A cross-sectional study.  Diabetes. 1997;  46 1001-1009
  • 4 DeFronzo R A, Tobin J D, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance.  Am J Physiol. 1979;  237 E214-E223
  • 5 Fujimoto W Y. The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus.  Am J Med. 2000;  108 (Suppl 6A) 9S-14S
  • 6 Porte D, Jr. Banting lecture 1990. Beta-cells in type II diabetes mellitus.  Diabetes. 1991;  40 166-180
  • 7 Hu S, Wang S, Fanelli B, Bell P A, Dunning B E, Geisse S, Schmitz R, Boettcher B R. Pancreatic beta-cell K (ATP) channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide.  J Pharmacol Exp Ther. 2000;  293 444-452
  • 8 Wollheim C B. Beta-cell mitochondria in the regulation of insulin secretion: a new culprit in type II diabetes.  Diabetologia. 2000;  43 265-277
  • 9 Roberge J N, Brubaker P L. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop.  Endocrinology. 1993;  133 233-240
  • 10 Thorens B. Glucagon-like peptide-1 and control of insulin secretion.  Diabete Metab. 1995;  21 311-318
  • 11 Chausmer A B. Zinc, insulin and diabetes.  J Am Coll Nutr. 1998;  17 109-115
  • 12 Bray G A. Afferent signals regulating food intake.  Proc Nutr Soc. 2000;  59 373-384
  • 13 Traxinger R R, Marshall S. Role of amino acids in modulating glucose-induced desensitization of the glucose transport system.  J Biol Chem. 1989;  264 20 910-20 916

M. González-Ortiz,M.D., M.Sc., Ph.D. 

Montes Urales 1409
Colonia Independencia

44340, Guadalajara
México


Phone: Phone:+ 52 (3) 826-7022

Fax: Fax:+ 52 (3) 616-1218

Email: E-mail:uiec@prodigy.net.mx