Semin Reprod Med 2001; 19(2): 141-146
DOI: 10.1055/s-2001-15394
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Molecular Analysis of Genes on Xp Controlling Turner Syndrome and Premature Ovarian Failure (POF)

Andrew R. Zinn1 , Judith L. Ross2
  • 1The University of Texas Southwestern Medical School, Dallas, Texas and
  • 2Thomas Jefferson University Medical College, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Monosomy X has been known to be the chromosomal basis of Turner syndrome (TS) for more than four decades. A large body of cytogenetic data indicates that most TS features are due to reduced dosage of genes on the short arm of the X chromosome (Xp). Phenotype mapping studies using molecular cytogenetic and genetic techniques are beginning to localize the Xp genes that are important for various TS features, and a comprehensive catalog of candidate genes is becoming available through the Human Genome Project and related research. It is now possible to assess the contributions of individual genes to the TS phenotype by mutational analysis of karyotypically normal persons with specific TS features. This strategy has succeeded in identifying a gene involved in short stature and is being applied to premature ovarian failure and other TS phenotypes.

REFERENCES

  • 1 Ford C E, Jones K W, Polani P E, De Almeida C J, Briggs J H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome).  Lancet . 1959;  1 711-713
  • 2 Turner H H. A syndrome of infantilism, congenital webbed neck, and cubitus valgus.  Endocrinology . 1938;  23 566-574
  • 3 Haddad H M, Wilkins L. Congenital anomalies associated with gonadal aplasia.  Pediatrics . 1959;  23 885-802
  • 4 Bender B, Puck M, Salbenblatt J, Robinson A. Cognitive development of unselected girls with complete and partial X monosomy.  Pediatrics . 1984;  73 175-182
  • 5 Waber D P. Neuropsychological aspects of Turner's syndrome.  Dev Med Child Neurol . 1979;  21 58-70
  • 6 Lyon M. Sex chromatin and gene action in the mammalian X-chromosome.  Am J Hum Genet . 1962;  14 135-148
  • 7 Therman E, Denniston C, Sarto G E, Ulber M. X chromosome constitution and the human female phenotype.  Hum Genet . 1980;  54 133-143
  • 8 Zinn A R, Page D C, Fisher E MC. Turner syndrome: the case of the missing sex chromosome.  Trends Genet . 1993;  9 90-93
  • 9 Ferguson-Smith M A. Karyotype-phenotype correlations in gonadal dysgenesis and their bearing on the pathogenesis of malformations.  J Med Genet . 1965;  2 142-155
  • 10 Ogata T, Matsuo N. Turner syndrome and female sex chromosome aberrations: deduction of the principal factors involved in the development of clinical features.  Hum Genet . 1995;  95 607-629
  • 11 Ross J L, Roeltgen D, Kushner H, Wei F, Zinn A R. The Turner syndrome-associated neurocognitive phenotype maps to distal Xp.  Am J Hum Genet . 2000;  67 672-681
  • 12 Zinn A R, Tonk V S, Chen Z. Evidence for a Turner syndrome locus or loci at Xp11.2-p22.1  Am J Hum Genet . 1998;  63 1757-1766
  • 13 Ogata T, Petit C, Rappold G, Matsuo N, Matsumoto T, Goodfellow P. Chromosomal localisation of a pseudoautosomal growth gene(s).  J Med Genet . 1992;  29 624-628
  • 14 Fisher E M, Beer-Romero P, Brown L G. Homologous ribosomal protein genes on the human X and Y chromosomes: escape from X inactivation and possible implications for Turner syndrome.  Cell . 1990;  63 1205-1218
  • 15 Ellison J, Wardak Z, Young M, Robey P, Laigwebster M, Chiong W. PHOG, a candidate gene for involvement in the short stature of Turner syndrome.  Hum Mol Genet . 1997;  6 1341-1347
  • 16 Rao E, Weiss B, Fukami M. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome.  Nat Genet . 1997;  16 54-63
  • 17 Gehring W J, Hiromi Y. Homeotic genes and the homeobox.  Annu Rev Genet . 1986;  20 147-173
  • 18 Belin V, Cusin V, Viot G. SHOX mutations in dyschondrosteosis (Léri-Weill syndrome).  Nat Genet . 1998;  19 67-69
  • 19 Shears D J, Vassal H J, Goodman F R. Mutation and deletion of the pseudoautosomal gene SHOX cause Léri-Weill dyschondrosteosis.  Nat Genet . 1998;  19 70-73
  • 20 Cormier-Daire V, Belin V, Cusin V. SHOX gene mutations and deletions in dyschondrosteosis or Léri-Weill syndrome.  Acta Paediatr Suppl . 1999;  88 55-59
  • 21 Spranger S, Schiller S, Jauch A. Léri-Weill syndrome as part of a contiguous gene syndrome at Xp22.3  Am J Med Genet . 1999;  83 367-371
  • 22 Espiritu C E, Chen H, Woolley Jr V P. Probable homozygosity for the dyschondrosteosis genes.  Birth Defects Orig Artic Ser . 1975;  11 127-132
  • 23 Langer Jr O L. Mesomelic dwarfism of the hypoplastic ulna, fibula, mandible type.  Radiology . 1967;  89 654-660
  • 24 Lippe B. Turner syndrome.  Endocrinol Metab Clin North Am . 1991;  20 121-152
  • 25 Clement-Jones M, Schiller S, Rao E. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome.  Hum Mol Genet . 2000;  9 695-702
  • 26 Jones K L. Smith's Recognizable Patterns of Human Malformation.  5th ed. Philadelphia: WB Saunders 1997: 442
  • 27 Kosho T, Muroya K, Nagai T. Skeletal features and growth patterns in 14 patients with haploinsufficiency of SHOX: implications for the development of Turner syndrome.  J Clin Endocrinol Metab . 1999;  84 4613-4621
  • 28 Page D C, Mosher R, Simpson E M. The sex-determining region of the human Y chromosome encodes a finger protein.  Cell . 1987;  51 1091-1104
  • 29 Schneider-Gadicke A, Beer-Romero P, Brown L G, Nussbaum R, Page D C. ZFX has a gene structure similar to ZFY, the putative human sex determinant, and escapes X inactivation.  Cell . 1989;  57 1247-1258
  • 30 Luoh S W, Bain P A, Polakiewicz R D. Zfx mutation results in small animal size and reduced germ cell number in male and female mice.  Development . 1997;  124 2275-2284
  • 31 Adler D A, Bressler S L, Chapman V M, Page D C, Disteche C M. Inactivation of the Zfx gene on the mouse X chromosome.  Proc Natl Acad Sci U S A . 1991;  88 4592-4595
  • 32 Ashworth A, Rastan S, Lovell-Badge R, Kay G. X-chromosome inactivation may explain the difference in viability of XO humans and mice.  Nature . 1991;  351 406-408
  • 33 Carrel L, Cottle A A, Goglin K C, Willard H F. A first-generation X-inactivation profile of the human X chromosome.  Proc Natl Acad Sci U S A . 1999;  96 14440-14444
  • 34 Jones M H, Furlong R A, Burkin H. The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2  Hum Mol Genet . 1996;  5 1695-1701
  • 35 Cerutti L, Simanis V. Controlling the end of the cell cycle.  Curr Opin Genet Dev . 2000;  10 65-69
  • 36 Lahn B, Page D. Functional coherence of the human Y chromosome.  Science . 1997;  278 675-680
  • 37 Sun C, Skaletsky H, Birren B. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y Nat Genet .  1999;  23 429-432
  • 38 Brown C J, Willard H F. Localization of a gene that escapes inactivation to the X chromosome proximal short arm: implications for X inactivation.  Am J Hum Genet . 1990;  46 273-279
  • 39 Dube J L, Wang P, Elvin J, Lyons K M, Celeste A J, Matzuk M M. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes.  Mol Endocrinol . 1998;  12 1809-1817
  • 40 Laitinen M, Vuojolainen K, Jaatinen R. A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis.  Mech Dev . 1998;  78 135-140
  • 41 Dong J, Albertini D F, Nishimori K, Kumar T R, Lu N, Matzuk M M. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature . 1996;  383 531-535
  • 42 McGrath S A, Esquela A F, Lee S J. Oocyte-specific expression of growth/differentiation factor-9.  Mol Endocrinol . 1995;  9 131-136
  • 43 Galloway S M, McNatty K P, Cambridge L M. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.  Nat Genet . 2000;  25 279-283
    >