Semin Thromb Hemost 2001; 27(3): 207-214
DOI: 10.1055/s-2001-15250
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Role of Virulence Factors in Enterohemorrhagic Escherichia coli (EHEC) - Associated Hemolytic-Uremic Syndrome

Helge Karch
  • Institut für Hygiene, Universität Münster, Münster, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) are the most common cause of postdiarrheal hemolytic-uremic syndrome (HUS). The most important EHEC serotype implicated worldwide is O157:H7. However, several so-called non-O157 EHEC serotypes have emerged. After a mean incubation period of 3 days, patients develop watery diarrhea accompanied by cramping abdominal pain. During the next days, in most patients watery diarrhea changes to bloody diarrhea. One week after the onset of diarrhea, in about 15% of infected patients under 10 years of age EHEC infection results in a systemic complication, HUS. Shiga toxins (Stxs) are considered the major virulence factors of EHEC involved in the pathogenesis of HUS. It is generally believed that after intestinal infection with EHEC, Stxs cross the intestinal barrier and bind to endothelial cells. At this point they presumably injure the host cell by inhibition of protein synthesis, stimulation of prothrombotic messages, or induction of apoptosis. The B subunit of Stx binds to the membrane receptor globotriaosylceramide (Gb3). Gb3 facilitates the endocytosis and intracellular trafficking of the toxin. The Stx A subunit hydrolyzes a specific adenine residue of the 60S ribosomal subunit of mammalian cells. As a consequence, Stx shuts down the protein machinery of the susceptible cell. The HUS is the net effect of a variety of interacting factors, including background risk of acquisition, host factors (such as age), virulence characteristics of the infecting EHEC strain, and exogenous factors. All known EHEC virulence determinants are located on mobile genetic elements, and this has an important impact on the evolution of these pathogens. The evolution of EHEC has a dynamic component that includes different genetic mechanisms. The recent progress in understanding the pathogenesis and epidemiology of EHEC infections forms a basis for the development of future strategies to prevent EHEC infections in humans.

REFERENCES

  • 1 Kaplan B S. The pathogenesis and treatment of hemolytic uremic syndrome.  J Am Soc Nephrol . 1998;  9 1126-1133
  • 2 Bockemühl J, Karch H. Zur aktuellen Bedeutung der enterohämorrhagischen Escherichia coli (EHEC) in Deutschland (1994-1995).  Bundesgesundheitsblatt . 1996;  8 290-296
  • 3 Bockemühl J, Karch H, Tschäpe H. Infektionen des Menschen durch enterohämorrhagische Escherichia coli (EHEC) in Deutschland, 1996.  Bundesgesundheitsblatt . 1997;  6 194-197
  • 4 Bockemühl J, Karch H, Tschäpe H. Zur Situation der Infektionen des Menschen durch enterohämorrhagische Escherichia coli (EHEC) in Deutschland, 1997.  Bundesgesundheitsblatt . 1998;  Suppl(October) 2-5
  • 5 Tarr P I. Escherichia coli O157:H7: clinical, diagnostic, and epidemiological aspects of human infection.  Clin Infect Dis . 1995;  20 1-8
  • 6 Karch H, Bielaszewska M, Bitzan M, Schmidt H. Epidemiology and diagnosis of Shiga toxin-producing Escherichia coli infections.  Diagn Microbiol Infect Dis . 1999;  34 229-243
  • 7 Caprioli A, Tozzi A E, Rizzoni G, Karch H. Non-O157 Shiga toxin-producing Escherichia coli infections in Europe.  Emerg Infect Dis . 1997;  3 578-579
  • 8 Caprioli A, Tozzi A E. Epidemiology of Shiga toxin-producing Escherichia coli infections in continental Europe. In: Kaper JB, O'Brien AD, eds. Escherichia coli O157:H7 and other Shiga Toxin-Producing Ecoli Strains. Washington, DC: American Society for Microbiology 1998: 38-48
  • 9 Acheson D WK, Keusch G T. Which Shiga toxin-producing types of Ecoliare important?.  ASM News. 1995;  62 302-306
  • 10 Acheson D WK, Wolf L E, Park C H. Escherichia coli and the hemolytic uremic syndrome.  N Engl J Med . 1997;  336 515
  • 11 Park C H, Gates K M, Vandel N M, Hixon D L. Isolation of Shiga-like toxin producing Escherichia coli (O157 and non-O157) in a community hospital.  Diagn Microbiol Infect Dis . 1996;  26 69-72
  • 12 Lopez E L, Diaz M, Grinstein S. Hemolytic uremic syndrome and diarrhoea in Argentine children: the role of Shiga-like toxins.  J Infect Dis . 1989;  160 469-475
  • 13 Goldwater P N, Bettelheim K A. The role of enterohaemorrhagic Escherichia coli serotypes other than O157:H7 as causes of disease.  Commun Dis Intell . 1995;  19 2-4
  • 14 Gunzer F, Böhm H, Rüssmann H. Molecular detection of sorbitol-fermenting Escherichia coli O157 in patients with hemolytic-uremic syndrome.  J Clin Microbiol . 1992;  30 1807-1810
  • 15 Bielaszewska M, Schmidt H, Karmali M A. Isolation and characterization of sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H- strains in the Czech Republic.  J Clin Microbiol . 1998;  36 2135-2137
  • 16 O'Brien A D, Newland J W, Miller S F. Shiga-like toxin converting bacteriophages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea.  Science . 1984;  226 694-696
  • 17 Smith H W, Green P, Parsell Z. Vero cell toxin in Escherichia coli and related bacteria: transfer by phage and conjugation and toxic action in laboratory animals, chicken and pigs.  J Gen Microbiol . 1983;  129 3121-3137
  • 18 Kaper J B, Elliott S, Sperandio V. Attaching-and-effacing intestinal histopathology and the locus of enterocyte effacement. In: Kaper JB, O'Brien AD, eds. Escherichia coli O157:H7 and other Shiga Toxin-Producing Ecoli Strains. Washington, DC: American Society for Microbiology 1998: 163-182
  • 19 Karch H, Schubert S, Zhang D. A genomic island, termed ``high pathogenicity island'', is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages.  Infect Immun . 1999;  68 5994-6001
  • 20 Tarr P I, Bilge S S, Vary J C. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure.  Infect Immun . 2000;  68 1400-1407
  • 21 Karch H, Schmidt H, Brunder W. Plasmid-encoded determinants of Escherichia coli O157:H7. In: Kaper JB, O'Brien AD, eds. Escherichia coli O157:H7 and other Shiga Toxin-Producing Ecoli Strains. Washington, DC: American Society for Microbiology 1998: 183-194
  • 22 Brunder W, Schmidt H, Frosch M, Karch H. The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements.  Microbiology . 1999;  145 1005-1014
  • 23 O'Brien A D, Tesh V L, Donohue R A. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis.  Curr Top Microbiol Immunol . 1992;  180 65-94
  • 24 Schmitt C K, McKee M L, O'Brien A D. Two copies of shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H- strain E32511.  Infect Immun . 1991;  59 1065-1073
  • 25 Pierard D, Muyldermas G, Moriau L, Stevens D, Lauwers S. Identification of new verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates.  J Clin Microbiol . 1998;  36 3317-3322
  • 26 Weinstein D L, Jackson M P, Samuel J E, Holmes R K, O'Brien A D. Cloning and sequencing of a Shiga-like toxin type II variant from an Escherichia coli strain responsible for edema disease of swine.  J Bacteriol . 1988;  170 4223-4230
  • 27 Schmidt H, Scheef J, Morabito S. A new Shiga toxin variant (Stx2f) from Escherichia coli isolated from pigeons.  Appl Environ Microbiol . 2000;  66 1205-1208
  • 28 Rüssmann H, Schmidt H, Heesemann J, Caprioli A, Karch H. Variants of Shiga-like toxin II constitute a major toxin component in Escherichia coli O157 strains from patients with haemolytic uraemic syndrome.  J Med Microbiol . 1994;  40 338-343
  • 29 Karch H. Unpublished data, 2000 . 
  • 30 Karmali M A, Petric M, Lim C. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli J Infect Dis .  1985;  151 775-782
  • 31 Richardson S E, Rotman T A, Jay V. Experimental verocytotoxemia in rabbits.  Infect Immun . 1992;  60 4154-4167
  • 32 Hertzke D M, Cowan L A, Schoning P, Fenwick B W. Glomerular ultrastructural lesions of idiopathic cutaneous and renal glomerular vasculopathy of greyhounds.  Vet Pathol . 1995;  32 451-459
  • 33 Taylor F B, Tesh V L, DeBault L. Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1.  Am J Pathol . 1999;  154 1285-1299
  • 34 Mangeney M, Lingwood C A, Taga S. Apoptosis induced in Burkitt's lymphoma cells via Gb3/CD77, a glycolipid antigen.  Cancer Res . 1993;  53 5314-5319
  • 35 Taga S, Carlier K, Mishal Z. Intracellular signaling events in CD77-mediated apoptosis of Burkitt's lymphoma cells.  Blood . 1997;  90 2757-2767
  • 36 Nagakawa I, Nakata M, Kawabata S, Hamada S. Regulated expression of the Shiga toxin B gene induces apoptosis in mammalian fibroblastic cells.  Mol Microbiol . 1999;  33 1190-1199
  • 37 van Setten A P, van Hinsberg W V>, van-der Velden J T. Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells.  Kidney Int . 1997;  51 1245-1256
  • 38 Louise B, Obrig T G. Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells.  J Infect Dis . 1995;  172 1397-1401
  • 39 Bombeli T, Schwartz B R, Harlan J M. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets.  Blood . 1999;  93 3831-3838
  • 40 Taguchi T, Uchida H, Kiyokawa N. Verotoxins induce apoptosis in human renal tubular epithelium derived cells.  Kidney Int . 1998;  53 1681-1688
  • 41 Uchida H, Kiyokawa N, Taguchi T. Shiga toxins induce apoptosis in pulmonary epithelium-derived cells.  J Infect Dis . 1999;  180 1902-1911
  • 42 Hughes A K, Stricklett P K, Kohan D E. Shiga toxin 1 regulation of cytokine production by human proximal tubule cells.  Kidney Int . 1998;  54 1093-1106
  • 43 Simon M, Cleary T G, Hernandez J D, Abboud H E. Shiga toxin 1 elicits diverse biologic responses in mesangial cells.  Kidney Int . 1998;  54 1117-1127
  • 44 van de Kar C N, Monnens L A, Karmali M A, van Hinsbergh W V. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome.  Blood . 1992;  80 2755-2764
  • 45 Karpman D, Hakansson A, Perez M T. Apoptosis of renal cortical cells in the hemolytic-uremic syndrome: in vivo and in vitro studies.  Infect Immun . 1998;  66 636-644
  • 46 Bitzan M, Marsden P A. Novel effects of verotoxin on intracellular adhesion molecule-1 gene expression in vascular endothelium.  Pediatr Nephrol (Abst). 1998;  12 C74
  • 47 Kimmitt P T, Hardwood C R, Barer M R. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response.  Emerg Infect Dis . 2000;  6 1-11
  • 48 Neely M N, Friedman D I. Functional and genetic analysis of regulatory regions of coliphage H-19: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release.  Mol Microbiol . 1998;  28 1255-1267
  • 49 Plunkett III G, Rose D J, Durfee T J, Blattner F R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product.  J Bacteriol . 1999;  181 1767-1778
  • 50 Karch H, Strockbine N A, O'Brien A D. Growth of Escherichia coli in the presence of trimethoprim-sulfamethoxazole facilitates detection of Shiga-like toxin producing strains by colony blot assay.  FEMS Microbiol Lett . 1986;  35 141-145
  • 51 Matsushiro A, Sato K, Miyamoto H, Yamamura T, Honda T. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin.  J Bacteriol . 1999;  181 2257-2260
  • 52 Wong C S, Jelacic S, Habeeb R, Watkins S, Tarr P. The risk of hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections.  N Engl J Med . 2000;  342 1930-1936
  • 53 Sherman P, Soni R, Karmali M. Attaching and effacing adherence of Vero cytotoxin-producing Escherichia coli to rabbit intestinal epithelium in vivo.  Infect Immun . 1988;  56 756-761
  • 54 Frankel G, Phillips A D, Rosenshine I. Enteropathogenic and enterohemorrhagic Escherichia coli: more submersive elements.  Mol Microbiol . 1998;  30 911-921
  • 55 Hurley B P, Jacewicz M, Thorpe C M. Shiga toxins 1 and 2 translocate differently across polarized intestinal epithelial cells.  Infect Immun . 1999;  67 6670-6677
  • 56 Paton A W, Manning P A, Woodrow M C, Paton J C. Translocated intimin receptors (Tir) of Shiga-toxigenic Escherichia coli isolates belonging to serogroups O26, O111, and O157 react with sera from patients with hemolytic-uremic syndrome and exhibit marked heterogeneity.  Infect Immun . 1998;  66 5580-5586
  • 57 Jarvis K, Kaper J B. Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via putative type III secretion system.  Infect Immun . 1996;  64 4826-4829
  • 58 Carniel I, Guilvout I, Prentice M. Characterization of a large chromosomal ``high pathogenicity island'' in biotype 1B Yersinia enterocolitica J Bacteriol .  1996;  178 6743-6751
  • 59 Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933.  Infect Immun . 1995;  63 1055-1061
  • 60 Schmidt H, Maier E, Karch H, Benz R. Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7.  Eur J Biochem . 1996;  241 594-601
  • 61 Brunder W, Schmidt H, Karch H. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohemorrhagic Escherichia coli O157:H.  Microbiology . 1996;  142 3305-3315
  • 62 Brunder W, Schmidt H, Karch H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V.  Mol Microbiol . 1997;  24 767-778
  • 63 Schmidt H, Henkel B, Karch H. A gene cluster closely related to type II secretion pathway operons of gram-negative bacteria is located on the large plasmid of enterohaemorrhagic Escherichia coli O157 strains.  FEMS Microbiol Lett . 1997;  148 265-272
  • 64 Burland V, Shao Y, Perna N T. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7.  Nucleic Acids Res . 1998;  26 4196-4204
  • 65 Makino K, Ishii K, Yasunaga T. Complete nucleotide sequence of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak.  DNA Res . 1998;  5 1-9
  • 66 Hughes A K, Stricklett P K, Kohan D E. Cytotoxic effect of Shiga toxin 1 on human proximal tubule cells.  Kidney Int . 1998;  54 426-437
  • 67 Hughes A K, Stricklett P K, Schmid D, Kohan D E. Cytotoxic effect of Shiga toxin 1 on human glomerular epithelial cells.  Kidney Int . 2000;  57 2350-2359
    >