Horm Metab Res 2001; 33(5): 263-269
DOI: 10.1055/s-2001-15119
Original Basic

© Georg Thieme Verlag Stuttgart · New York

Mutations in the Mouse TSH Receptor Equivalent to Human Constitutively Activating TSH Receptor Mutations Also Cause Constitutive Activity

S. Neumann, K. Krohn, S. Chey, R. Paschke
  • III. Medical Department, University of Leipzig, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Constitutively activating mutations in the human thyroid-stimulating hormone (TSH) receptor (TSHr) have been identified as the most prevalent molecular cause of non-autoimmune hyperthyroidism. To investigate the feasibility of an animal model for non-autoimmune hyperthyroidism, we introduced two mutations in the mouse TSHr which had previously been identified in the human TSHr. The two human mutations showed strong differences in TSH binding, basal cAMP and IP accumulation. In the human TSHr, the Ile 486 Phe mutation causes a high increase of basal cAMP accumulation and also basal stimulation of the inositol phosphate pathway, whereas the Val 509 Ala mutation results in a low increase of basal cAMP accumulation without affecting IP signaling. RNA was isolated from mouse thyroid tissue and reverse transcribed. A 2.4 kb PCR product from the mouse TSHr was cloned into the pGEM-T vector system. Ile was substituted with Phe at codon 486 and Val with Ala at codon 509. These mutated mouse TSHrs were subcloned in the pSVL expression vector. After transient expression in COS-7 cells, basal and TSH-stimulated cAMP and IP accumulation, cell surface expression and TSH binding were determined and directly compared to the human TSHr. Whereas constitutively activating mutations of the human parathyroid hormone (PTH)/PTH-related peptide receptor showed little or no change in basal cAMP accumulation when introduced into the rat PTH/PTHrP receptor, these two mouse TSHr mutations resulted in constitutive activity similar to the homologous mutations in the human TSHr. Therefore, it should be possible to establish a mouse model for non-autoimmune hyperthyroidism by homologous recombination to study the pathogenetic mechanisms of non-autoimmune hyperthyroidism.

References

  • 1 Paschke R, Ludgate M. The thyrotropin receptor in thyroid diseases.  N Engl J Med. 1997;  337 1675-1681
  • 2 Ledent C, Dumont J E, Vassart G, Parmentier M. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.  EMBO J. 1992;  11 537-542
  • 3 Paschke R, Tonacchera M, Van Sande J, Parma J, Vassart G. Identification and functional characterization of two new somatic mutations causing constitutive activation of the TSH receptor in hyperfunctioning autonomous adenomas of the thyroid.  J Clin Endocrinol Metab. 1994;  79 1785-1789
  • 4 Van Sande J, Parma J, Tonacchera M, Swillens S, Dumont J, Vassart G. Genetic basis of endocrine disease: Somatic and germline mutations of the TSH receptor gene in thyroid diseases.  J Clin Endocrinol Metab. 1995;  80 2577-2585
  • 5 Cetani F, Tonacchera M, Vassart G. Differential effects of NaCl concentration on the constitutive activity of the thyrotropin and the luteinizing hormone/chorionic gonadotropin receptors.  FEBS Lett. 1996;  378 27-31
  • 6 Duprez L, Parma J, Van Sande J, Allgeier A, Leclère J, Schvartz C, Delisle M J, Decoulx M, Orgiazzi J, Dumont J E, Vassart G, et al. Germline mutations in the thyrotropin receptor gene cause non autoimmune autosomal dominant hyperthyroidism.  Nature Genetics. 1994;  7 396-401
  • 7 Sandrock D, Olbricht T, Emrich D, Benker G, Reinwein D. Long-term follow-up in patients with autonomous thyroid adenoma.  Acta Endocrinologica. 1993;  128 51-55
  • 8 Wonerow P, Stötzner H, Chey S. Lack of correlation between in vitro activities of sporadic constitutively activating TSH-receptor germ-line mutations and the onset of hyperthyroidism (Abstract).  Journal Endocrinol Invest. 1999;  22 17
  • 9 Fuhrer D, Mix M, Wonerow P, Richter I, Willgerodt H, Paschke R. Variable phenotype associated with Ser505Asn-activating thyrotropin- receptor germline mutation.  Thyroid. 1999;  9 757-761
  • 10 Holzapfel H P, Wonerow P, von Petrykowski W, Henschen M, Scherbaum W A, Paschke R. Sporadic congenital hyperthyroidism due to a spontaneous germline mutation in the thyrotropin receptor gene.  J Clin Endocrinol Metab. 1997;  82 3879-3884
  • 11 Kosugi S, Akamizu T, Mori T. Possible difference in glycosylation of the thyrotropin receptor among species.  Biochem Biophys Res Commun. 1994;  200 1207-1213
  • 12 Pearce S H, Foster D J, Imrie H, Myerscough N, Beckett G J, Thoday K L, Kendall-Taylor P. Mutational analysis of the thyrotropin receptor gene in sporadic and familial feline thyrotoxicosis.  Thyroid. 1997;  7 923-927
  • 13 Schipani E, Jensen G S, Pincus J, Nissenson R A, Gardella T J, Juppner H. Constitutive activation of the cyclic adenosine 3’,5’-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors mutated at the two loci for Jansen’s metaphyseal chondrodysplasia.  Mol Endocrinol. 1997;  11 851-858
  • 14 Parma J, Van Sande J, Swillens S, Tonacchera M, Dumont J E, Vassart G. Somatic mutations causing constitutive activity of the TSH receptor are the major cause of hyperfunctional thyroid adenomas: identification of additional mutations activating both the cAMP and inositolphosphate-Ca++ cascades.  Mol Endocrinol. 1995;  9 725-733
  • 15 Libert F, Lefort A, Gérard C, Parmentier M, Perret J, Ludgate M, Dumont J E, Vassart G. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies.  Biochem Biophys Res Commun. 1989;  165 1250-1255
  • 16 Wonerow P, Schoneberg T, Schultz G, Gudermann T, Paschke R. Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation.  J Biol Chem. 1998;  273 7900-7905
  • 17 Swillens S. Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis.  Mol Pharmacol. 1995;  47 1197-1203
  • 18 Duprez L, Parma J, Costagliola S, Hermans J, Van Sande J, Dumont J E, Vassart G. Constitutive activation of the TSH receptor by spontaneous mutations affecting the N-terminal extracellular domain.  FEBS Lett. 1997;  409 469-474
  • 19 Berridge M J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol.  Biochem J. 1983;  212 849-858
  • 20 Van Sande J, Raspé E, Perret J, Lejeune C, Maenhaut C, Vassart G, Dumont J E. Thyrotropin activates both the cyclic AMP and the PIP2 cascades in CHO cells expressing the human cDNA of TSH receptor.  Mol Cell Endocrinol. 1990;  74 R1-R6
  • 21 Kass P H, Peterson M E, Levy J, James K, Becker D V, Cowgill L D. Evaluation of environmental, nutritional, and host factors in cats with hyperthyroidism.  J Vet Intern Med. 1999;  13 323-329
  • 22 Ramirez S, McClure J J, Moore R M, Wolfsheimer K J, Gaunt S D, Mirza M H, Taylor W. Hyperthyroidism associated with a thyroid adenocarcinoma in a 21-year- old gelding.  J Vet Intern Med. 1998;  12 475-477
  • 23 Brammer D W, Juneau P L, Chrisp C E, O’Rourke C M, Altrogge D M, Peter G K, Hofing G L. Spontaneous hyperthyroidism in an aged male and female Macaca mulatta.  J Med Primatol. 1998;  27 273-277
  • 24 Michiels F M, Caillou B, Talbot M, Dessarps-Freichey F, Maunoury M T, Schlumberger M, Mercken L, Monier R, Feunteun J. Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice.  Proc Natl Acad Sci USA. 1994;  91 10 488-10 492
  • 25 Zeiger M A, Saji M, Gusev Y, Westra W H, Takiyama Y, Dooley W C, Kohn L D, Levine M A. Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and hyperthyroidism in transgenic mice.  Endocrinology. 1997;  138 3133-3140
  • 26 Ledent C, Denef J F, Cottecchia S, Lefkowitz R, Dumont J, Vassart G, Parmentier M. Costimulation of adenylyl cyclase and phospholipase C by a mutant alpha 1B-adrenergic receptor transgene promotes malignant transformation of thyroid follicular cells.  Endocrinology. 1997;  138 369-378
  • 27 Kong X F, Schipani E, Lanske B, Joun H, Karperien M, Defize L H, Juppner H, Potts J TJ, Segre G V, Kronenberg H M. The rat, mouse and human genes encoding the receptor for parathyroid hormone and parathyroid hormone-related peptide are highly homologous.  Biochem Biophys Res Commun. 1994;  200 1290-1299
  • 28 Abou-Samra A B, Juppner H, Force T, Freeman M W, Kong X F, Schipani E, Urena P, Richards J, Bonventre J V, Potts J TJ. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium.  Proc Natl Acad Sci USA. 1992;  89 2732-2736
  • 29 Schipani E, Karga H, Karaplis A C, Potts J TJ, Kronenberg H M, Segre G V, Abou-Samra A B, Juppner H. Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor.  Endocrinology. 1993;  132 2157-2165
  • 30 Cotte N, Balestre M N, Phalipou S, Hibert M, Manning M, Barberis C, Mouillac B. Identification of residues responsible for the selective binding of peptide antagonists and agonists in the V2 vasopressin receptor.  J Biol Chem. 1998;  273 29 462-29 468
  • 31 Kinter L B, Huffman W F, Stassen F L. Antagonists of the antidiuretic activity of vasopressin.  Am J Physiol. 1988;  254 F165-F177

R. Paschke,M.D. 

III. Medical Department
University of Leipzig

Ph.-Rosenthal-Strasse 27
04103 Leipzig
Germany


Phone: Phone:+ 49 (341) 9713200

Fax: Fax:+ 49 (341) 9713209

Email: E-mail:pasr@server3.medizin.uni-leipzig.de

    >