Exp Clin Endocrinol Diabetes 2001; Vol. 109(3): 155-162
DOI: 10.1055/s-2001-14839
Articles

© Johann Ambrosius Barth

Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells

D. Schams 1 , M. Kosmann 1 , B. Berisha 1 , W. M. Amselgruber 2 , A. Miyamoto 1
  • 1 Institute of Physiology, Technical University of Munich, Freising-Weihenstephan, Germany
  • 2 Department of Anatomy and Physiology, University of Hohenheim, Stuttgart, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Summary:

Vascular endothelial growth factor (VEGF) is the most important factor in the regulation of angiogenesis. Associated with luteinisation and formation of corpus luteum (CL) are alterations in luteal vascularity. The aim of the study was to test under in vitro conditions the stimulation of VEGF and progesterone (P) secretion of bovine granulosa cells by LH, IGF1 (insulin like growth factor) or by factors known to be produced by luteinised granulosa cells or in the early CL. Localisation of VEGF protein in preovulatory follicle and early CL were achieved by immunohistochemistry. LH and IGF1 stimulated dose dependently and significantly P and VEGF when tested alone. Both hormones added simultaneously had clear additive and even more interesting far greater (synergistic) effects on P with LH (0.1 ng/ml) plus 5 or 10 ng IGF1. In contrast, VEGF was stimulated only additively with 0.1 ng/ml of LH plus 5 or 10 ng IGF1. But with the higher dose of LH (1 ng/ml) additionally to the additive effect a tendency for a synergistic action (which was significant with 1 ng LH plus 5 ng IGF1/ml) was observed. Endothelin, oxytocin, progesterone, atrial natiuretic peptide, angiotensin II, prostaglandin F2α α, prostaglandin E2, cortisol, fibroblast growth factor 1 and 2 and growth hormone showed no effect neither on P nor on VEGF. Tumour necrosis factor α (TNFα) stimulated (P < 0.05) VEGF with 10 or 100 ng/ml but not P. TPA (12-0 tetra decaenoyl-phorbol-13-acetate) or Ca2+ ionophore did not show a stimulatory effect in contrast to forskolin which increased P and VEGF secretion dose dependently. The VEGF protein was localised in follicle (granulosa cells, theca cells and some endothelial cells) and early (about 24 h after ovulation) CL (granulosa-lutein cells and endothelial cells). The same signalling pathway by stimulation of cAMP production and proteinkinase A activation for luteinisation and neo-vascularisation demonstrates a close temporal and spatial relationship of these normal physiological processes.

References

  • 1 Alan T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.  Nat Med. 1 1024-1028 1995; 
  • 2 Amselgruber W, Sinowatz F, Schams D, Skottner A. Immunohistochemical aspects of insulin-like growth factors I and II in the bovine corpus luteum.  J Reprod Fertil. 101 445-451 1994; 
  • 3 Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and tissue concentration of vascular endothelial growth factor, its receptors and localization in the bovine corpus luteum during estrous cycle and pregnancy.  Biol of Reprod. 63 1106-1114 2000; 
  • 4 Brogi E, Wu T, Namiki A, Isner J M. Indirect angiogenic cytokines upregulate VEGF and bFGF expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only.  Circulation. 90 649-652 1994; 
  • 5 Claffey K P, Wilkinson W O, Spiegelmann B M. Vascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways.  J Biol Chem. 267 16317-16322 1992; 
  • 6 Einspanier R, Miyamoto A, Schams D, Müller M, Brem G. Tissue concentration, mRNA expression and stimulation of IGF-1 in luteal tissue during the oestrous cycle and pregnancy of cows.  J Reprod Fertil. 90 439-445 1990; 
  • 7 Ferrara N, Hauk K, Jakeman L, Leung D W. Molecular and biological properties of the vascular endothelial growth factor family of proteins.  Endocrine Rev. 13 18-32 1992; 
  • 8 Finkenzeller G, Marme D, Weich H A, Hug H. Platelet-derived growth factor-induced transcription of the vascular endothelial growth factor gene is mediated by protein kinase C.  Cancer Res. 52 4821-4823 1992; 
  • 9 Gabler Ch, Plath-Gabler A, Killian G J, Spanel-Borowski K, Schams D. Regulation of angiogenic factors in bovine endothelial cells of the corpus luteum by estradiol, vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2).  Exp Clin Endocrinol Diabetes 107 ((Suppl 1)) 30 1999; 
  • 10 Garrido C, Saule S, Gospodarowicz D. Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells.  Growth Factors. 8 109-117 1993; 
  • 11 Goede V, Schmidt T, Kimmina S, Kozian D, Augustin H G. Analysis of blood vessel maturation processes during cyclic ovarian angionesis.  Lab Invest. 78 1385-1394 1998; 
  • 12 Hsu S M, Raine L, Fanger H. Use of avidin-biotin peroxydase complex (ABC) in immunoperoxydase technique: a comparison between ABC and unlabelled antibody (PAP procedure).  J Histochem Cytochem. 29 577-580 1981; 
  • 13 Keyt B, Berleau L, Nguyen H, Heinshon H, Chen H, Vandler R, Ferrara N. The carboxyl-terminal domain (III-165) of VEGF is critical for mitogenic potency.  J Biol Chem. 271 7788-7795 1996; 
  • 14 Koos R D. Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture.  Biol Reprod. 52 1426-1435 1995; 
  • 15 Laitinen M, Ristimaki A, Honkasalo M, Narko K, Paavonen K, Ritvos O. Differential hormonal regulation of vascular endothelial growth factors VEGF, VEGF-B, and VEGF-C messenger ribonucleic acid levels in cultured human granulosa-luteal cells.  Endocrinology. 138 4748-4756 1997; 
  • 16 Metzen E, Fandrey J, Jelkmann W. Evidence against a major role for Ca2+ in hypoxia-induced gene expression in human hepatoma cells (Hep3B).  J Physiol (Lond). 15 651-657 1999; 
  • 17 Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vivo and in vitro.  Lab Invest. 71 374-379 1994; 
  • 18 Mukhopadhyay D, Akbarali H I. Depletion of [Ca2+]i inhibits hypoxia-induced vascular permeability factor (vascular endothelial growth factor) gene expression.  Biochem Biophys Res Commun. 24 733-738 1996; 
  • 19 Nishizuka Y. Studies and perspectives of protein kinase C.  Science. 233 305-310 1986; 
  • 20 Phillips H S, Hains J, Leung D W, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum.  Endocrinology. 127 965-967 1990; 
  • 21 Prakash B S, Meyer H HD, Schallenberger E, van de Wiel D F. Development of a sensitive enzymimmunoassay (EIA) for progesterone determination in unextracted bovine plasma using the second antibody technique.  J Steroid Biochem. 28 623-627 1987; 
  • 22 Ravindranath N, Little-Ihrig L, Phillips H S, Ferrara N, Zeleznik J. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary.  Endocrinology. 131 254-260 1992; 
  • 23 Reynolds L P, Killilea S D, Redmer D A. Angiogenesis in the female reproductive system.  FASEB Journal. 6 886-892 1992; 
  • 24 Richards R G, Almond G W. Identification and distribution of tumor necrosis factor receptors in pig corpora lutea.  Biol Reprod. 51 1285-1291 1994; 
  • 25 Sakumoto R, Berisha B, Kawate N, Schams D, Okuda K. Tumor necrosis factor-alpha and its receptor in bovine corpus luteum throughout the estrous cycle.  Biol Reprod. 62 192-199 2000; 
  • 26 Seamon K B, Daly J W. Forskolin: its biological and chemical properties.  Adv Cyclic Nucleotide Protein Phosphorylation Res. 20 1-150 1986; 
  • 27 Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.  Nature. 359 843-845 1992; 
  • 28 Spicer L J. Tumor necrosis factor-(TNF-α)inhibits steroidogenesis of bovine ovarian granulosa cells in vitro. Involvement of TNFα- receptors.  Endocrine. 8 109-115 1998; 
  • 29 Warren R S, Yuan H, Matli M R, Ferrara N, Donner D B. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma.  J Biol Chem. 271 29483-29488 1996; 

Prof. Dr. D. Schams

Institute of Physiology

Technical University of Munich

Weihenstephaner Berg 3

D-85350 Freising-Weihenstephan

Germany

Phone: +49 8161 713509

Fax: +49 8161 714204

Email: physio@weihenstephan.de

    >