Planta Med 2001; 67(4): 312-316
DOI: 10.1055/s-2001-14322
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Lignans from the Rhizomes of Coptis japonica Differentially Act as Anti-Inflammatory Principles

Jae Youl Cho1, 2,*, Ae Ra Kim3 , Myung Hwan Park1
  • 1 Department of Immunopharmacology, R & D Center, Daewoong Pharmaceutical Co. Ltd., Sungnam, Korea
  • 2 Department of Immunology, Windeyer Institute of Medical Sciences, University College London Medical School, London, U.K.
  • 3 Department of Pharmacy, College of Pharmacy, Pusan National University, Pusan, Korea
Further Information

Publication History

June 8, 2000

September 10, 2000

Publication Date:
31 December 2001 (online)

Abstract

Coptis japonica Makino (Ranunculaceae) is known to possess several biological activities such as anti-inflammatory effects. In this study, five lignans, isolariciresinol (1), lariciresinol glycoside (2), pinoresinol (3), pinoresinol glycoside (4) and syringaresinol glycoside (5), isolated from the rhizomes of C. japonica were tested to evaluate their in vitro anti-inflammatory effects. Pinoresinol and isolariciresinol showed higher inhibitory effects on TNF-α production, whereas syringaresinol glycoside strongly suppressed lymphocyte proliferation. The results indicate that the lignans may differentially modulate inflammatory cell responses, suggesting that these compounds may participate in anti-inflammatory processes by C. japonica.

References

  • 1 Yook C S. Medicinal Plants of Korea. Seoul; Jinmyeong Publishing Co. 1989: 278
  • 2 Lee M K, Kim H S. Inhibitory effects of protoberberine alkaloids from the roots of Coptis japonica on catecholamine biosynthesis in PC12 cells.  Planta Medica. 1996;  62 31-4
  • 3 Umeda M, Amagaya S, Ogihara Y J. Effects of certain herbal medicines on the biotransformation of arachidonic acid: a new pharmacological testing method using serum.  Journal of Ethnopharmacology. 1988;  23 91-8
  • 4 Sullivan G W, Sarembock I J, Linden J. The role of inflammation in vascular diseases.  Journal of Leukocyte Biology. 2000;  67 591-602
  • 5 Ayres D C, Loike J D. Lignans: Chemical, Biological and Clinical Properties. Cambridge; Cambridge University Press 1990: 402
  • 6 Vlietinck A J, Bruyne T, Apers S, Pieters L A. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection.  Planta Medica. 1998;  64 97-109
  • 7 Cho J Y, Kim P S, Park J, Chae S H, Yoo E S, Baik K U, Park M H. Immunomodulatory effect of arctigenin, a lignan compound, on tumor necrosis factor-α and nitric oxide production, and lymphocyte proliferation.  Journal of Pharmaceutical Pharmacology. 1999;  51 1267-73
  • 8 Yoshikawa K, Kinoshita H, Kan Y, Arihara S. Neolignan and phenylpropanoids from the Rhizomes of Coptis japonica var. dissecta .  Chemical and Pharmaceutical Bullutin. 1995;  43 578-81
  • 9 Cho J Y, Park J, Yoo E S, Baik K U, Yoshikawa K, Lee J, Park M H. Inhibitory effect of lignans isolated from Coptis japonica var. dissecta on TNF-α production in LPS-stimulated RAW264.7 cells.  Archives of Pharmacal Research. 1998;  21 12-6
  • 10 Cho J Y, Park J, Kim P S, Chae S H, Yoo E S, Baik K U et al. Inhibitory effect of medicinal plants on TNF-α production from LPS-stimulated RAW264.7 cells.  Natural Product Sciences. 1999;  5 12-9
  • 11 Ding A, Nathan C F, Stuehr D J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production.  Journal of Immunology. 1988;  141 2407-18
  • 12 Stanly J B, Gorczynski R, Huang C K, Love J, Mills G B. Tyrosine phosphorylation is an obligatory event in IL-2 secretion.  Journal of Immunology. 1990;  145 2189-98
  • 13 Nevins T E. Overview of new immunosuppressive therapies.  Current Opinion Pediatrics. 2000;  12 146-50
  • 14 Hevey M, Donehower L A. Complementation of human immunodeficiency virus type 1 vif mutants in some CD4+ T-cell lines.  Virus Research. 1994;  33 269-80
  • 15 Sun C M, Syu W J, Huang Y T, Chen C C, Ou J C. Selective cytotoxicity of ginkgetin from Selaginella moellendorffii .  Journal of Natural Products. 1997;  60 382-4
  • 16 Chae S H, Kim P S, Cho J Y, Park J, Lee J H, Yoo E S et al. Isolation and identification of inhibitory compounds on TNF-α production from Magnolia fargesii .  Archives of Pharmacal Research. 1998;  21 67-9
  • 17 Nishibe K, Tsukamoto H, Hisada S, Nikaido T, Ohmoto T, Sankawa U. Inhibition of cyclic AMP phosphodiesterase by lignans and coumarins of Olea and Fraxinus barks.  Shoyakugaku Zasshi. 1986;  40 89-94
  • 18 Severn A, Rapson N T, Hunter C A, Liew F Y. Regulation of tumor necrosis factor production by adrenaline and β-adrenergic agonists.  Journal of Immunology. 1992;  148 3441-5
  • 19 Han B H, Yang H O, Kang Y H, Kim Y C, Go H J, Suh D Y. Studies on platelet activating factor (PAF) antagonists from Korean medicinal plants.  Korean Journal of Medicinal Chemistry. 1996;  6 128-34
  • 20 Im S Y, Han S J, Ko H M, Choi J H, Chun S B, Lee D G et al. Involvement of nuclear factor-κB in platelet-activating factor-mediated tumor necrosis factor-α expression.  European Journal of Immunology. 1997;  27 2800-4

Jae Youl Cho

Department of Immunology

Windeyer Institute of Medical Sciences

University College London Medical School

46 Cleveland Street

London W1P 6DB

United Kingdom

Email: jae.cho@ucl.ac.uk

Fax: +44 207-679 9357

    >