Horm Metab Res 2001; 33(2): 89-95
DOI: 10.1055/s-2001-12403
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

A Novel Use of the Hyperinsulinemic-Euglycemic Clamp Technique to Estimate Insulin Sensitivity of Systemic Lipolysis

M. Stumvoll1 , H. G. Wahl1 , K. Löblein, R. Becker, A. Volk, W. Renn, S. Jacob, H. Häring
  • Department of Endocrinology and Metabolism, Eberhard-Karls-Universität, Tübingen, Germany
  • 1 These authors contributed equally to the study
Further Information

Publication History

Publication Date:
31 December 2001 (online)

The aim of the present study was to assess whether a standard hyperinsulinemic-euglycemic clamp can provide an estimate for the antilipolytic insulin sensitivity. For this purpose, we infused 9 non-obese, healthy volunteers with [2H5]glycerol and used the glycerol rate of appearance (Ra) in plasma as an index for systemic lipolysis during a standard (1 mU/kg · min, 120 min) and a 3-step (0.1, 0.25, 1.0 mU/kg · min) hyperinsulinemic-euglycemic clamp. The insulin concentration, which half-maximally suppressed lipolysis (EC50) in the three-step clamp, was considered to be the gold standard for the antilipolytic insulin sensitivity. Glycerol Ra decreased from 1.53 ± 0.11 µmol/kg·min to 0.60 ± 0.09 µmol/kg · min (p < 0.001) during the standard clamp. The decrease in Ra at most time points during the standard clamp significantly correlated with the EC50. The highest correlation for the % decrease of glycerol Ra from baseline was found at 60 min (r = 0.96, p < 0.001) making this parameter a useful index for the antilipoytic insulin sensitivity. Neither plasma glycerol nor plasma free fatty acid (FFA) concentrations were significantly correlated with the EC50. In conclusion, the standard hyperinsulinemic-euglycemic clamp in combination with isotopic determination of glycerol Ra provides a reasonable estimate for the antilipolytic insulin sensitivity. In healthy subjects, the parameter best suited to estimate the insulin EC50 (by linear correlation) was the percentage decrease of glycerol Ra at 60 min.

References

  • 1 Bonadonna R C, Bonora E. Glucose and free fatty acid metabolism in human obesity.  Diabetes Rev. 1997;  5 21-51
  • 2 Campbell P J, Carlson M G, Nurjhan N. Fat metabolism in human obesity.  Am J Physiol. 1994;  266 E600-E605
  • 3 Groop L C, Bonadonna R C, Simonson D C, Petrides A S, Shank M, DeFronzo R A. Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity.  Am J Physiol. 1992;  263 E79-E84
  • 4 Groop L C, Bonadonna R C, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo R A. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance.  J Clin Invest. 1989;  84 205-213
  • 5 Randle P J, Priestman D A, Mistry S C, Halsall A. Glucose fatty acid interactions and the regulation of glucose disposal.  J Cell Biol. 1994;  55S 1-11
  • 6 Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.  Diabetes. 1997;  46 3-10
  • 7 Paolisso G, Howard B V. Role of non-esterified fatty acids in the pathogenesis of type 2 diabetes.  Diabetic Med. 1998;  15 360-366
  • 8 Eriksson J W, Smith U, Waagstein F, Wysocki M, Jansson P. Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients. Is cellular insulin resistance a secondary phenomenon?.  Diabetes. 1999;  48 1572-1578
  • 9 Ferrannini E, Camastra S, Coppack S W, Fliser D, Golay A, Mitrakou A. Insulin action and non-esterified fatty acids. The European Group for the Study of Insulin Resistance (EGIR).  Proc Nutr Soc. 1997;  56 753-761
  • 10 Pimenta W, Korytkowski M, Mitrakou A, Jenssen T, Yki-Järvinen H, Evron W, Dailey G, Gerich J. Pancreatic beta-cell dysfunction as the primary genetic lesion in NIDDM.  JAMA. 1995;  273 1855-1861
  • 11 Pan D A, Lillioja S, Kriketos A D, Milner M R, Baur L A, Bogardus C, Jenkins A B, Storlien L H. Skeletal muscle triglyceride levels are inversely related to insulin action.  Diabetes. 1997;  46 983-988
  • 12 Nyholm B, Qu Z, Kaal A, Pedersen S B, Gravholt C H, Andersen J L, Saltin B, Schmitz O. Evidence of an increased number of type IIb muscle fibers in insulin-resistant first-degree relatives of patients with NIDDM.  Diabetes. 1997;  46 1822-1828
  • 13 Volk A, Renn W, Overkamp D, Mehnert B, Maerker E, Jacob S, Balletshofer B, Häring H U, Rett K. Insulin action and secretion in healthy, glucose tolerant first degree relatives of patients with type 2 diabetes. Influence of body weight.  Exp Clin Endocrinol Diabetes. 1999;  107 140 -147
  • 14 Townsend R R, Klein S, Wolfe R R. Changes in lipolytic sensitivity following repeated epinephrine infusion in humans.  Am J Physiol. 1994;  266 E155-E160
  • 15 Nurjhan N, Campbell P, Kennedy F, Miles J, Gerich J. Insulin dose-response characteristics for suppression of glycerol release and conversion to glucose in humans.  Diabetes. 1986;  35 1326-1331
  • 16 Robinson C, Tamborlane W V, Maggs D G, Enoksson S, Sherwin R S, Silver D, Shulman G I, Caprio S. Effect of insulin on glycerol production in obese adolescents.  Am J Physiol. 1998;  274 E737-E743
  • 17 Stumvoll M, Jacob S. Multiple sites of insulin resistance: muscle, liver and adipose tissue.  Exp Clin Endocrinol Diabetes. 1999;  107 107-110
  • 18 Hagström-Toft E, Bolinder J, Ungerstedt U, Arner P. A circadian rhythm in lipid mobilization which is altered in IDDM.  Diabetologia. 1997;  40 1070-1078
  • 19 Campbell P J, Carlson M G, Hill J O, Nurjhan N. Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification.  Am J Physiol. 1992;  263 E1063-E1069
  • 20 DeBodo R, Steele R, Atszuler N, Dunn A, Bishop J. On the hormonal regulation of carbohydrate metabolism: studies with C14 glucose.  Rec Prog Horm Res. 1963;  19 445-488
  • 21 McCulloch A J, Johnston D G, Baylis P H, Kendall Taylor P, Clark F, Young E T, Alberti K G. Evidence that thyroid hormones regulate gluconeogenesis from glycerol in man.  Clin Endocrinol Oxf. 1983;  19 67-76
  • 22 Beylot M, Martin C, Beaufrère B, Riou J P, Mornex R. Determination of steady state and nonsteady-state glycerol kinetics in humans using deuterium-labeled tracer.  J Lipid Res. 1987;  28 414-422
  • 23 Diaconis P, Efron B. Computer-intensive methods in statistics.  Scientific American. 1983;  248 116-132
  • 24 Saggerson E D, Greenbaum A L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue.  Biochem J. 1970;  119 193-219
  • 25 Reaven G, Chang H, Hoffman B B. Impaired insulin-mediated inhibition of lipolysis and glucose transport with aging.  Horm Metab Res. 1989;  21 168-171
  • 26 Finegood D T, Bergman R N, Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates.  Diabetes. 1987;  36 914-924
  • 27 Stumvoll M, Welle S, Chintalapudi U, Perriello G, Gutierrez O, Gerich J. Uptake and release of glucose by the human kidney: Postabsorptive rates and responses to epinephrine.  J Clin Invest. 1995;  96 2528-2533
  • 28 Kellerer M, Rett K, Renn W, Groop L, Häring H U. Circulating TNF-alpha and leptin levels in offspring of NIDDM patients do not correlate to individual insulin sensitivity.  Horm Metab Res. 1996;  28 737-743
  • 29 Coppack S W, Persson M, Judd R L, Miles J M. Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue.  Am J Physiol. 1999;  276 E233-E240

Dr. M. Stumvoll

Medizinische Universitätsklinik

Otfried-Müller-Str. 10
72076 Tübingen
Germany


Phone: Phone:+ 49 (7071) 2980390

Fax: Fax:+ 49 (7071) 292784

    >