Zusammenfassung
Die Transformation einer normalen in eine maligne Zelle erfolgt über einen Mehr-Schritt-Mechanismus,
der verschiedene molekulare und genetische Veränderungen beinhaltet. Diese molekularen
Veränderungen entstehen spontan oder werden durch Karzinogene wie z. B. Naphtylamine
(ein im Zugarettenrauch enthaltenes Karzinogen) ausgelöst. Diese Arbeit fasst einige
der wichtigsten molekularen und genetischen Veränderungen beim Blasenkarzinom zusammen.
Wie bei den meisten anderen malignen Erkrankungen wird auch Blasenkrebs durch eine
Häufung verschiedener molekularer Veränderungen ausgelöst. Durch Mutation oder chromosomale
Aberration kommt es zur veränderten Expression von Onkogenen (ras, erbB-2 und EGF-Rezeptor),
Tumor-Suppressor-Genen (Rb, p53), Zell-Zyklus-Genen (p15, p16) und DNA-Reparatur-Genen.
LOH der Chromosomen 9p und 9q hat sich als ein entscheidendes Ereignis bei der Transformation
von normalem Urothel zu papillärem Übergangszellkarzinom erwiesen, während p53 primär
bei der Entstehung des Carcinoma in situ von Bedeutung ist.
Abstract
The transformation of a normal into a malignant cell is a multi-step mechanism, which
involves various alterations on the molecular and genetic level. These molecular alterations
occur spontaneously or are induced by carcinogens (e. g. naphtylamine - a component
of cigarette smoke and one of the most important carcinogens leading to bladder tumor
carcinogenesis). This report summarizes some of the most important molecular and genetic
alterations in bladder cancer. As in most other malignancies the generation of bladder
cancer is caused by the accumulation of various molecular changes. The expression
of oncogenes (ras, erbB-2 and EGF receptor), tumor-suppressor genes (Rb, p53), cell-cycle
genes (p15, p16) and DNA-repair genes is altered mostly by mutation or chromosomal
abberation. Loss of heterozygosity of chromosome 9p and 9q has been shown to be a
crucial event in the transition of normal urothelium to papillary transitional cell
carcinoma, while p53 is primarily involved in the development of carcinoma in situ.
Key words:
Urogenital neoplasms - Bladder neoplasms - Genetics
Literatur
- 1
Hoffmann D, Masuda Y, Wynder E L.
Alpha-naphthylamine and beta-naphthylamine in cigarette smoke.
Nature.
1969;
221
254
- 2
Clavel J, Cordier S, Boccon-Gibod L, Hemon D.
Tobacco and bladder cancer in males: increased risk for inhalers and smokers of black
tobacco.
Int J Cancer.
1989;
44
605-610
- 3 Rübben H, Otto T.
Harnblasenkarzinome. In: Rübben H, ed. Uro-Onkologie Berlin; Springer Verlag 1993: 79-147
- 4
Gericke D, Harzmann R.
Blasenkarzinom - Folge der Industrialisierung.
Fortschritte der Medizin.
1986;
104
33
- 5
Feramisco J R, Gross M, Kamata T, Rosenberg M, Sweet R W.
Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid
proliferation of quiescent cells.
Cell.
1984;
38 (1)
109-117
- 6
Kroft S H, Oyasu R.
Biology of Disease: Urinary bladder cancer: mechanisms of development and progression.
Lab Invest.
1994;
71 (2)
158-174
- 7
Bos J L.
ras oncogenes in human cancer: a review.
Cancer Res.
1989;
49
4682-4689
- 8
Barbacid M A.
ras genes.
Annu Rev Biochem.
1987;
56
779
- 9
Levesque P, Ramchurren N, Saini K, Joyce A LJ, Summerhayes I C.
Screening of human bladder tumors and urine sediments for the presence of H-ras mutations.
Int J Cancer.
1993;
55 (5)
785-790
- 10
Orntoft T F, Wolf H.
Molecular alterations in bladder cancer.
Urol Res.
1998;
26
223-233
- 11
Knowles M A.
Molecular genetics of bladder cancer.
Brit J Urol.
1995;
75 (1)
57-66
- 12
Momose H, Kakinuma H, Shariff S Y, Mitchell G B, Rademaker A, Oyasu R.
Tumorpromoting effect of urinary epidermal growth factor in rat urinary bladder carcinogenesis.
Cancer Res.
1991;
51 (20)
5487-5490
- 13
Messing E M, Reznikoff C A.
Normal and malignant human urothelium: in vitro effects of epidermal growth factor.
Cancer Res.
1987;
47 (9)
2230-2235
- 14
Messing E M, Reznikoff C A.
Binding and responsiveness to epidermal growth factor by in vitro transformants of
normal urothelial cells.
J Urol.
1990;
143
272
- 15
Messing E M.
Clinical implications of the expression of epidermal growth factor receptors in human
transitional cell carcinoma.
Cancer Res.
1990;
50 (8)
2530-2537
- 16
Nevins J R, Leone G, DeGregori J, Jakoi L J.
Role of the Rb/E2F pathway in cell growth control.
Cell Physiol.
1997;
173 (2)
233-236
- 17
Takahashi R, Hashimoto T, Xu H J. et al .
The retinoblastoma gene functions as a growth and tumor suppressor in human bladder
carcinoma cells.
Proc Natl Acad Sci.
1991;
88 (12)
5257-5261
- 18
Adshead J M, Kessling A M, Ogden C W.
Genetic initiation, progression and prognostic markers in transitional cell carcinoma
of the bladder: a summary of the structural and transcriptional changes, and the role
of development genes.
Brit J Urol.
1998;
82
503-512
- 19
Reznikoff C A, Belair C D, Yeager T R. et al .
A molecular genetic model of human bladder cancer pathogenesis.
Sem Oncol.
1996;
23 (5)
571-584
- 20
Sidransky D, von Eschenbach A, Tsai Y C.
Identification of p53 gene mutations in bladder cancers and urine samples.
Science.
1991;
252
706-709
- 21
Sarkis A S, Dalbagni G, Cordon-Cardo C.
Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker
for disease progression.
J Natl Cancer Inst.
1993;
85
53
- 22
Fujimoto K, Yamada Y, Okajima E. et al .
Frequent association of p53 gene mutation in invasive bladder cancer.
Cancer Res.
1992;
52 (6)
1393-1398
- 23
Taylor J A, Li Y, He M. et al .
P53 mutations in bladder tumors from arylamine-exposed workers.
Cancer Res.
1996;
56 (2)
294-298
- 24
Olumi A F, Tsai Y C, Nichols P W. et al .
Allelic loss of chromosome 17p distinguishes high grade from low grade transitional
cell carcinomas of the bladder.
Cancer Res.
1990;
50 (21)
7081-7083
- 25
Okamoto M, Hattori K, Fujimoto K, Tanaka Y, Gloosby C L, Oyasu R.
Antisense RNA-mediated reduction of p53 induces malignant phenotype in nontumorigenic
rat urothelial cells.
Carcinogenesis.
1998;
19 (1)
73-79
- 26
Tsai Y C, Nichols P W, Hiti A I.
Allelic losses of chromosomes 9, 11 and 17 in human bladder cancer.
Cancer Res.
1990;
50
44
- 27
Williamson M P, Elder P A, Shaw M E, Devlin J, Knowles M A.
P16 (CDKN2) is a major deletion target at 9p21 in bladder cancer.
Hum Mol Genet.
1995;
4 (9)
1569-1577
- 28
Nobori T, Miura K, Wu D J, Lois A, Takabayashi K, Carson D A.
Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers.
Nature.
1994;
368 (6473)
753-756
- 29
Kamb A, Gruis N A, Weaver-Feldhaus J. et al .
A cell cycle regulator potentially involved in genesis of many tumor types.
Science.
1994;
264 (5157)
436-440
- 30
Knowles M A, Elder P A, Williamson M, Cairns J P, Shaw M E, Law M G.
Allelotype of human bladder cancer.
Cancer Res.
1994;
54 (2)
531-538
- 31
Presti Jr J C, Reuter V E, Galan T, Fair W R, Cordon-Cardo C.
Molecular genetic alterations in superficial and locally advanced human bladder cancer.
Cancer Res.
1991;
51 (19)
5405-5409
- 32
Chi S G, Chang S G, Lee S J, Lee C H, Kim J I, Park J H.
Elevated and biallelic expression of p73 is associated with progression of human bladder
cancer.
Cancer Res.
1999;
59 (12)
2791-2793
- 33
Spruck C H, Ohneseit P F, Gonzalez-Zulueta M. et al .
Two molecular pathways to transitional cell carcinoma of the bladder.
Cancer Res.
1994;
54 (3)
784-788
- 34
Pycha A, Mian C, Hofbauer J, Haitel A, Wiener H, Marberger M.
Does topical instillation therapy influence chromosomal aberrations in superficial
bladder cancer.
J Urol.
1998;
159
265
Dr. med. Priv.-Doz. A. Böhle
Klinik für Urologie Medizinische Universität zu Lübeck
Ratzeburger Allee 160
23538 Lübeck
Phone: 0451 500 6112
Email: boehle@medinf.mu-luebeck.de