Int J Sports Med 2000; 21(1): 60-64
DOI: 10.1055/s-2000-8857
Training and Testing
Georg Thieme Verlag Stuttgart ·New York

Energetically Optimal Cadence vs. Freely-Chosen Cadence During Cycling: Effect of Exercise Duration

 J. Brisswalter1 ,  C. Hausswirth2 ,  D. Smith3 ,  F. Vercruyssen4 ,  J. M. Vallier5
  • 1Université de Toulon-Var, France
  • 2Laboratoire de Physiologie et Biomécanique, INSEP, Paris, France
  • 3Queensland Academy of Sport Triathlon, Brisbane, Australia
  • 4LAPMH, Université de Poitiers, France
  • 5Service Médical, INSEP, Paris, France
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The purpose of this study was to examine the relationship between cadence and oxygen consumption with exercise duration. Ten triathletes who trained regularly were examined. The first test was always a maximal test to determine maximal oxygen uptake (V˙O2max). The other sessions were composed of six submaximal tests representing 80 % of the maximal power reached with V˙O2max (Pmax). During these tests submaximal rides with a duration of 30 min were performed. Each test represented, in a randomised order, one of the following pedal rates: 50, 65, 80, 95, 110 rpm and a freely-chosen rate. V˙O2, respiratory parameters, and heart rate were monitored continuously. Two periods, between the 3rd and the 6th minute and between the 25th and the 28th minute, were analysed. Results showed that when V˙O2 and heart rate were plotted against cadence, each curve could be best described by a parabolic function, whatever the period. Furthermore, a significant effect of period was found on energetically optimal cadence (70 ± 4.5 vs. 86 ± 6.2 rpm, P < 0.05). Only during the second period was no significant difference found between freely-chosen cadence (83 ± 6.9 rpm) and energetically optimal cadence (P > 0.05). In conclusion, our results suggest that during prolonged exercise triathletes choose a cadence that is close to the energetically optimal cadence. A change of muscle fibre recruitment pattern with exercise duration and cadence would explain the shift in energetically optimal rate towards a higher pedal rate observed at the end of exercise.


  • 1 Ahlquist L E, Bassett D R , Sufit R, Nagle F J, Thomas D P. The effect of pedalling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibres during submaximal cycling exercise.  Eur J Appl Physiol. 1992;  65 360-364
  • 2 Barstow T J, Jones A M, Nguyen P H, Casabury R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 3 Becque M D, Katch V, Marks C, Dyer R. Reliability and within subject variability of VE, V˙O2, heart rate and blood pressure during submaximum cycle ergometry.  Int J Sport Med. 1993;  14 220-223
  • 4 Brisswalter J, Fougeron B, Legros P. Effect of three hours racewalk on energy cost and stride rate in elite racewalkers.  Int J Sports Med. 1996;  17 182-186
  • 5 Brisswalter J, Legros P. Daily stability in energy cost running, respiratory parameters and stride rate among well trained middle distance runners.  Int J Sports Med. 1994;  15 238-241
  • 6 Brisswalter J, Mottet D. Energy cost and stride duration at preferred transition gait speed between walking and running.  Can J Appl Physiol. 1996;  21 471-480
  • 7 Bruckner J C, Atchou G, Capelli C, Duvallet A, Joussellin E, Rieu M. The energy cost of running increase with distance covered.  Eur J Appl Physiol. 1990;  62 68-72
  • 8 Clauser F. Effect of physiological training on cardiovascular adjustments to exercise in man.  Physiol Rev. 1977;  57 774-815
  • 9 Citterio G, Sironi S, Piccoli S, Agostini E. Slow to fast shift in inspiratory muscle fibres during heat tachypnea.  Respir Physiol. 1983;  51 259-274
  • 10 Coast J R, Welch H G. Linear increase in optimal pedal rate with increased power output in cycle ergometry.  Eur J Appl Physiol. 1985;  53 339-342
  • 11 Coast J R, Cox R H, Welch H G. Optimal pedalling rate in prolonged bouts of cycle ergometry.  Med Sci Sports Exerc. 1986;  18 225-230
  • 12 Coyle E F, Sdossis L S, Horowitz J F, Beltz J D. Cycling efficiency is related to percentage of type I muscle fibres.  Med Sci Sports Exerc. 1992;  24 782-788
  • 13 Dengel D R, Flynn M G, Costill D L. Determinants of success during triathlon competition.  Res Q Exerc Sport. 1989;  60 234-238
  • 14 Di Prampero P E. The energy cost of human locomotion on land and in water.  Int J Sports Med. 1986;  7 55-72
  • 15 Faria I E. Energy expenditure, aerodynamics and medical problems in cycling.  Sports Med. 1992;  14 43-63
  • 16 Gaesser G A, Brooks G A. Muscular efficiency during steady state exercise: effect of speed and work rate.  J Appl Physiol. 1975;  38 1132-1139
  • 17 Gregor R J, Broker J P, Ryan M M. The biomechanics of cycling.  Exercise and Science Review. 1991;  9 127-168
  • 18 Guezennec C Y, Bigard A X, Vallier J M, Durey A. The energy cost of running increase at the end of a triathlon.  Eur J Appl Physiol. 1996;  73 440-445
  • 19 Gollnick P D, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedal rates.  J Physiol. 1974;  214 45-57
  • 20 Hagan R D, Weiss S E, Raven P B. Effect of pedal rate on cardiorespiratory responses during continuous exercise.  Med Sci Sports Exerc. 1992;  24 1088-1095
  • 21 Hausswirth C, Bigard A X, Berthelot M, Thomaidis M, Guezennec C Y. Variability in energy cost of running at the end of a triathlon and a marathon.  Int J Sports Med. 1996;  17 574-581
  • 22 Hausswirth C, Bigard A X, Guezennec C Y. Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon.  Int J Sport Med. 1997;  18 1-10
  • 23 Heglund N C, Taylor C R. Speed, stride frequency and energy cost per stride: how do they change with body size and gait?.  J Exp Biology. 1988;  138 301-318
  • 24 Holt K G, Hamill J, Andres R O. Predicting the minimal energy cost of human walking.  Med Sci Sports Exerc. 1991;  25 491-498
  • 25 Kelso J AS, Scholtz J P, Schöner G. Dynamics governs switching among pattern of coordination in biological movement.  Physical Letters A. 1988;  134 8-12
  • 26 Kreider R B, Boone T, Thompson W R, Burke S, Cortes C W. Cardiovascular and thermal responses of triathlon performance.  Med Sci Sports Exerc. 1988;  20 385-390
  • 27 Laurenson N M, Fulcher K Y, Korkia P. Physiological characteristics of elite and club level female triathletes during running.  Int J Sports Med. 1993;  14 455-459
  • 28 Marsh A P, Martin P E. Effect of cycling exercise, aerobic power, power output on preferred and most economical cycling cadences.  Med Sci Sports Exerc. 1997;  29 1225-1232
  • 29 Marsh A P, Martin P E. The association between cycling experience and preferred and most economical cadences.  Med Sci Sports Exerc. 1993;  25 1269-1274
  • 30 Neptune R R, Hull M L. A theoretical analysis of preferred pedalling rate selection in endurance cycling.  J Biomech. 1999;  32 409-415
  • 31 Newell K M, Kugler P N, Emmerick R, Mc Donald P V. Search strategies in the acquisition of coordination. In: Wallace SA (ed) Perspectives on the coordination of movement. Amsterdam, North Holland; 1989: 85-122
  • 32 O'Toole M L, Douglas P S. Applied Physiology of Triathlon.  Sports Med. 1995;  19 251-267
  • 33 O'Toole M L, Douglas P S, Hiller W DB. Lactate, oxygen uptake and cycling performance in triathletes.  Int J Sports Med. 1989;  10 413-418
  • 34 Patterson R P, Moreno M I. Bicycle pedalling forces as a function of pedalling rate and power output.  Med Sci Sports Exerc. 1990;  22 512-516
  • 35 Poole D C, Richardson R S. Determinants of oxygen uptake: implications for exercise testing.  Sports Med. 1997;  24 308-320
  • 36 Sargeant A J. Human power output - Determinants of maximum performance. In: Marconnet P, Saltin B, Komi P, Poortmans J (eds) Human Muscular Function during Dynamic Exercise. Basel; Karger 1996: 10-20
  • 37 Sleivert G G, Rowlands S. Physical and physiological factors associated with success in the triathlon.  Sports Med. 1996;  1 8-18
  • 38 Tanaka H. Effects of cross-training: transfer to training effects on V˙O2max between cycling, running and swimming.  Sports Med. 1994;  18 330-339
  • 39 Takaishi T, Yasuda T Y, Ono T, Moritani T. Optimal pedalling rate estimated from neuromuscular fatigue for cyclists.  Med Sci Sports Exerc. 1996;  28 1492-1497
  • 40 Takaishi T, Yamamoto T Y, Ono T, Ito T, Moritani T. Neuromuscular, metabolic and kinetic adaptations for skilled pedalling performance in cyclists.  Med Sci Sports Exerc. 1998;  30 442-449
  • 41 Williams K R. The relationship between mechanical and physiological energy estimates.  Med Sci Sports Exerc. 1985;  17 317-325
  • 42 Woledge R C. Possible effects of fatigue on muscle efficiency.  Acta Physiol Scand. 1998;  162 267-273

Pr J. Brisswalter

Université Ergonomie Sportive et Performance Université de Toulon-Var

Avenue de l'Université

BP 132

F-83957 La Garde cedex


Phone: +33 (494)14 26 13

Fax: +33 (494)14 22 78