Minim Invasive Neurosurg 2000; 43(1): 1-3
DOI: 10.1055/s-2000-8811
ORIGINAL PAPER
Georg Thieme Verlag Stuttgart · New York

A Methodology Designed to Increase Accuracy and Safety in Stereotactic Brain Surgery

T. Kamiryo, T. Jackson, E. Laws Jr.
  • Department of Neurological Surgery, Virginia Neurological Institute, University of Virginia, USA
Further Information

Publication History

Publication Date:
31 December 2000 (online)

A series of technical tips and devices designed to increase accuracy and safety in stereotactic surgery are presented. We use stereotactic magnetic resonance imaging with three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) imaging to minimize image distortion, and a three-dimensional stereotactic planning system for accurately registering three-dimensional space. We also developed several technical devices useful for stereotactic intracranial procedures; an applicator system attached to the frame which simulates the fiducial markers in order to keep the target at a suitable position in stereotactic space; a torque wrench to set the torque on the fixing pins to the frame reproducibly at 5 inch pounds in order to keep distortion of the frame to a minimum while maintaining secure fixation; an entry point marker to maintain the calculated trajectory angle; a straightening cannula to prevent the thermo-coagulation needle from bending; a microvascular Doppler and its holder to detect significant vessels and to know their precise depth in order to avoid vascular injury from thermocoagulation; a burr hole button device to secure depth electrode cables at the patient's skull.

References

  • 1 Barnett G H, Kormos D W, Steiner C P, Weisenberger J. Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging.  Neurosurgery. 1993;  33 674-678
  • 2 Barnett G H, Kormos D W, Steiner C P, Weisenberger J. Intraoperative localization using an armless, frameless stereotactic wand. Technical note.  J Neurosurg. 1993;  78 510-514
  • 3 Chen T C, Rabb C, Apuzzo M L. Complex technical methodologies and their applications in the surgery of intracranial meningiomas.  Neurosurg Clin N Am. 1994;  5 261-281
  • 4 Drake J M, Prudencio J, Holowaka S, Rutka J T, Hoffman H J, Humphreys R P. Frameless stereotaxy in children.  Pediatr Neurosurg. 1994;  20 152-159
  • 5 Guthrie B L, Adler J R, Jr. Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy.  Clin Neurosurg. 1992;  38 112-131
  • 6 Horstmann G A, Reinhardt H F. Micro-stereometry: a frameless computerized navigating system for open microsurgery.  Comput Med Imaging Graph. 1994;  18 229-233
  • 7 Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H. A frameless, armless navigational system for computer-assisted neurosurgery. Technical note.  J Neurosurg. 1991;  74 845-849
  • 8 Olivier A, Germano I M, Cukiert A, Peters T. Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical note.  J Neurosurg. 1994;  81 629-633
  • 9 Reinhardt H F, Horstmann G A, Gratzl O. Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular malformations.  Neurosurgery. 1993;  32 51-57; discussion 57
  • 10 Roberts D W, Strohbehn J W, Hatch J F, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.  J Neurosurg. 1986;  65 545-549
  • 11 Roberts D W, Nakajima T, Brodwater B, Pavlidis J, Friets E, Fagan E, Hartov A, Strohbehn J. Further development and clinical application of the stereotactic operating microscope.  Stereotact Funct Neurosurg. 1992;  58 114-117
  • 12 Sandeman D R, Patel N, Chandler C, Nelson R J, Coakham H B, Griffith H B. Advances in image-directed neurosurgery: preliminary experience with the ISG Viewing Wand compared with the Leksell G frame.  Br J Neurosurg. 1994;  8 529-544
  • 13 Takizawa T. Isocentric stereotactic three-dimensional digitizer for neurosurgery.  Stereotact Funct Neurosurg. 1993;  60 175-193
  • 14 Tan K K, Grzeszczuk R, Levin D N, Pelizzari C A, Chen G T, Erickson R K, Johnson D, Dohrmann G J. A frameless stereotactic approach of neurosurgical planning based on retrospective patient-image registration. Technical note.  J Neurosurg. 1993;  79 296-303
  • 15 Yeh H S, Taha J M, Tobler W D. Implantation of intracerebral depth electrodes for monitoring seizures using the Pelorus stereotactic system guided by magnetic resonance imaging. Technical note.  J Neurosurg. 1993;  78 138-141
  • 16 Zamorano L J, Nolte L, Kadi A M, Jiang Z. Interactive intraoperative localization using an infrared-based system.  Neurol Res. 1993;  15 290-298
  • 17 Golfinos J G, Fitzpatrick B C, Smith L R, Spetzler R F. Clinical use of a frameless stereotactic arm: results of 325 cases.  J Neurosurg. 1995;  83 197-205
  • 18 Dormont D, Zerah M, Cornu P, Parker F, Aubert B, Sigal R, Francke J P, Zouaoui A, Marsault C. A technique of measuring the precision of an MR-guided stereotaxic installation using anatomic specimens. AJNR.  Am J Neuroradiol. 1994;  15 365-371
  • 19 Galloway R L, Jr., Maciunas R J, Latimer J W. The accuracies of four stereotactic frame systems: an independent assessment.  Biomed Instrum Technol. 1991;  25 457-460
  • 20 Walton L, Hampshire A, Foster D MC, Kemeny A A. A phantom study to assess the accuracy of stereotactic localization, using T1-weighted magnetic resonance imaging with the Leksell stereotactic system.  Neurosurgery. 1996;  38 170-178
  • 21 Maciunas R J, Galloway R L, Jr., Latimer J W. The application accuracy of stereotactic frames.  Neurosurgery. 1994;  35 682-694; discussion 694 - 695
  • 22 Maciunas R J, Galloway R L, Jr., Latimer J W, Cobb C, Zaccharias E, Moore A, Mandava V R. An independent application accuracy evaluation of stereotactic frame systems.  Stereotact Funct Neurosurg. 1992;  58 103-107
  • 23 Kitchen N D, Lemieux L, Thomas D G. Accuracy in frame-based and frameless stereotaxy.  Stereotact Funct Neurosurg. 1993;  61 195-206
  • 24 Kamiryo T, Laws E R, Jr. Stereotactic frame-based error in magnetic-resonance-guided stereotactic procedures: A method for measurement of error and standization of technique.  Stereotact Funct Neurosurg. 1996 - 97;  67 198-209
  • 25 Sumanaweera T, Adler T, Napel S, Glover G. Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery.  Neurosurgery. 1994;  35 696-704
  • 26 Mugler III. J, Brookeman J. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE).  Magn Reson Med. 1990;  15 152-157
  • 27 Goble J, Snell J, Hinckley K, Kassell N. A real time system for 3D neurosurgical planning.  Proc SPIE VBC. 1994;  2359 552-563
  • 28 Snell J, Jackson T, Katz W, Hinckley K, Goble J, Kassell N. Three dimensional stereotactic neurosurgical planner/stimulator.  Proc SPIE Med Imaging. 1995;  2431 110-118
  • 29 Kamiryo T, Laws E R, Jr. A stereotactic gauge for defining cranial entry points.  Stereotact Funct Neurosurg. 1996 - 97;  67 210-212
  • 30 Gilsbach J, Mohadjer M, Mundinger F. A new safety device to prevent bleeding complications during stereotactic biopsy - the “stereotactic” Doppler sonography.  Acta Neurochir. 1987;  89 77-79
  • 31 Kamiryo T, Laws E R, Jr. Identification and localization of intracerebral vessels by microvascular doppler in stereotactic pallidotomy and thalamotomy: Technical Note.  Neurosurgery. 1997;  40 877-879
  • 32 Kamiryo T, Laws E R, Jr. A burr hole button to secure the electrode cable in depth electrode placement.  J Neurosurg. 1997;  86 905-906

Corresponding Author

F.A.C.S M.D. Edward R. Laws
Jr.

Department of Neurological Surgery University of Virginia, Health Sciences Center, Box 212

Charlottesville

VA 22908

USA

Phone: +1804-924-2650

Fax: +1804-924-5894

Email: e15g@virginia.edu

    >