Zusammenfassung
Es werden tierexperimentelle Befunde vorgestellt, die den Einfluss frühkindlicher
Erfahrungs- und Lernprozesse auf die funktionelle Reifung des Gehirns und die zugrunde
liegende neurobiologische Basis der Entwicklung geistiger und psychischer Fähigkeiten
zeigen. Psychosoziale Einflüsse während Phasen früher postnataler Zeitfenster mit
erhöhter neuronaler und synaptischer Plastizität können tiefgreifende dauerhafte Veränderungen
der Hirnfunktionen induzieren, die sich später, nach Ablauf dieser plastischen Phasen,
nur noch bedingt korrigieren lassen. Ein traumatisierendes frühes Umfeld kann zu einer
Unter- bzw. Fehlentwicklung funktioneller Schaltkreise des Gehirns führen, wobei vor
allem das limbische System betroffen ist, das für die höhere neuronale Integration
von Kognition und Emotion wie auch für Lern- und Gedächtnisprozesse zuständig ist.
Solche aus früher pathogener psychosozialer Erfahrung induzierten hirnbiologischen
Fehlentwicklungen bilden wahrscheinlich die neurobiologische Grundlage von psychischen
Störungen, die als Neurosen, Persönlichkeitsstörungen und affektive Störungen und
somit als Erkrankungen klassifiziert werden, die bislang fast ausschließlich aus psychoanalytischer
oder verhaltenstheoretischer, kaum aber aus hirnbiologischer Sicht betrachtet wurden.
Implikationen für therapeutische Möglichkeiten und zukünftige Forschung werden diskutiert.
Juvenile Experience and Learning Modulate the Functional Maturation of the Brain:
Relevance for the Genesis and Therapy of Mental Disorders
This article summarizes experimental data that indicate how juvenile experience and
learning events modulate the functional maturation of the brain, shaping thereby the
neuronal substrate for the development of intellectual and socio-emotional abilities.
The fact that early experience occurs during early postnatal brain development, i.e.
phases of elevated neuronal and synaptic plasticity, results in an „imprinting” of
synaptic connectivity and neural circuitry in the infant brain. Results from experimental
research in animal models support the hypothesis that impoverished intellectual stimulation
and disturbance of the socio-emotional environment during early childhood may disturb
the formation of functional brain pathways, in particular of the limbic circuits,
which play a major role in emotion and learning. Such defective brain systems, representing
neurofunctional „scars” in the brain, may be the neuronal basis of a variety of mental
disorders and clinical symptoms caused by early stressful psychosocial environment.
Ultimately, the goal will be to apply the knowledge gained to the development of biological
and psychosocial intervention strategies by utilizing remaining plasticity of the
adult human brain aimed at promoting human health, decreasing susceptibility and increasing
resistance to disease.
Key words
Learning - Emotions limbic system - Brain development - Affective disorders
Literatur
- 1
Lorenz K.
Der Kumpan in der Umwelt des Vogels.
Journal für Ornithologie.
1935;
83
137-413
- 2
Gray P H.
Theory and evidence of imprinting in human infants.
The Journal of Psychology.
1985;
46
155-166
- 3
Bornstein M H.
Sensible periods in development: structural characteristics and causal interpretations.
Psychological Bulletin.
1989;
105
179-197
- 4
Grossmann K.
Frühe Einflüsse auf die soziale und intellektuelle Entwicklung des Kleinkinds.
Zeitschrift für Pädagogik.
1977;
23
847-880
- 5 Heckhausen H.
Entwicklung psychologisch betrachtet. In: Weinert FE (Hrsg) Pädagogische Psychologie. Frankfurt/M; 1974
- 6 Immelmann K, Grossmann K E.
Phasen kindlicher Entwicklung. In: Wendt H, Loacker N (Hrsg) Der Mensch. Kindler Verlag AG Zürich; 1981: 130-188
- 7
DeCasper A J, Fifer W P.
Of human bonding: newborns prefer their mothers' voices.
Science.
1980;
208
1174-1176
- 8
Poeggel G, Braun K.
Early auditory filial learning in degus (Octodon degus): Behavioral and autoradiographic
studies.
Brain Res.
1996;
743
162-170
- 9 Bowlby J. Attachment. Basic Books New York; 1969
- 10
Hassenstein B.
Kindliche Entwicklung aus der Sicht der Verhaltensbiologie.
Der Kinderarzt.
1973;
7
110-115
- 11
Moltz H.
Imprinting: Empirical basis and theoretical significance.
Psychological Bulletin.
1969;
57
291-314
- 12 Ambrose J A.
The concept of a critical period for the development of social responsiveness. In: Foss BM (Hrsg) Determinants of Infant Behavior II. London; Methuen 1963
- 13
Hoffman H S, Ratner A M.
A reinforcement model of imprinting: implications for socialization in monkeys and
men.
Psychological Review.
1973;
8
527-544
- 14 Leidermann P H.
Die soziale Bindung der Mutter an das Kind: Gibt es eine sensible Phase?. In: Immelmann K, Barlowe GW, Petrinovich L, Main M (Hrsg) Verhaltensentwicklung
bei Mensch und Tier. Hamburg, Berlin; Verlag Paul Parey 1982: 566-580
- 15
Rutter M.
Maternal deprivation, 1972 - 1978: new findings, new concepts, new approaches.
Child Development.
1979;
5
283-305
- 16 Rutter M.
Childhood experiences and adult psychosocial functioning. In: Ciba Foundation Symposium The childhood Environment and Adult Disease. Chichester;
Wiley 1991: 189-208
- 17 Klaus M H, Kennell J H. Maternal-infant bonding: The impact of early separation
or loss on family development. St. Louis; Mosby 1976
- 18
Harlow H F, Harlow M K.
Social deprivation in monkeys.
Scientific American.
1962;
207
137-146
- 19
Goldfarb W.
The effects of early institutional care on adolescent personality.
Journal of Experimental Education.
1943;
12
106-129
- 20
Spitz R A.
Hospitalism.
Psychoanalytic Study of the Child.
1945;
1
53-74
- 21
Spitz R A, Wolf K M.
The smiling response: a contribution to the ontogenesis of social relations.
Genetic Psychology Monographs.
1964;
34
57-125
- 22
Skeels H M.
Adult status of children with contrasting early life experiences: a follow-up study.
Monographs of the Society for Research in Child Development..
1966;
105, Vol 31 No 3
1-65
- 23 Kächele H, Buchheim A, Schmücker G, Brisch K H.
Entwicklung, Bindung, Beziehung - Neuere Konzepte zur Psychoanalyse. In: Möller H-J, Laux G. Kapfhammer H-P Psychiatrie und Psychotherapie. Berlin; Springer
2000: 606-630
- 24 Schüssler G.
Psychologische Grundlagen psychiatrischer Erkrankungen. In: Möller HJ, Laux G, Kapfhammer HP (Hrsg) Psychiat-rie und Psychotherapie. 2000:
172-201
- 25
Lyons-Ruth K, Alpern L, Repacholi B.
Disorganized infant attachment classification and maternal psychosocial problems as
predictors of hostile - aggressive behavior in preschool classroom.
Child Dev.
1993;
64
572-585
- 26 Golgi C. Gazetta Medica Italiana 1873 33: 244-246
- 27
Braun K.
Synaptische Reorganisation bei frühkindlichen Erfahrungs- und Lernprozessen: Relevanz
für die Entstehung psychischer Erkrankungen.
Zeitschrift für Klinische Psychologie, Psychiatrie und Psychotherapie.
1996;
44
253-266
- 28 Bogerts B.
Funktionell-neuroanatomische und neuropathologische Grundlagen psychiatrischer Erkrankungen. In: Möller H-J, Laux G, Kapfhammer H-P Psychiatrie und Psychotherapie. Berlin; Springer
2000: 102-117
- 29
Gruss M, Braun K.
Stimulus-evoked increase of glutamate in the mediorostral neostriatum/hyperstriatum
ventrale of domestic chick after auditory filial imprinting: an in vivo microdialysis
study.
J Neurochem.
1996;
66
1167-73
- 30
Bredenkötter M, Braun K.
Changes of neuronal responsiveness in the mediorostral neostriatum/hyperstriatum after
auditory filial imprinting in the domestic chick.
Neuroscience.
1997;
76
355-65
- 31
Bock J, Wolf A, Braun K.
Influence of the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric
acid on auditory filial imprinting in the domestic chick.
Neurobiol Learn Mem.
1996;
65
177-88
- 32
Bock J, Schnabel R, Braun K.
Role of the dorso-caudal neostriatum in filial imprinting of the domestic chick: a
pharmacological and autoradiographical approach focused on the involvement of NMDA-receptors.
Eur J Neurosci.
1997;
9
1262-1272
- 33
Wallhäußer E, Scheich H.
Auditory imprinting leads to differential 2-deoxyglucose uptake and dendritic spine
loss in the chick rostral forebrain.
Developmental Brain Research.
1987;
31
29-44
- 34
Bock J, Braun K.
Filial imprinting in domestic chicks is associated with spine pruning in the associative
area, dorsocaudal neostriatum.
Eur J Neurosci.
1999b;
11
2566-2570
- 35
Bock J, Braun K.
Blockade of N-methyl-D-aspartate receptor activation suppresses learning-induced synaptic
elimination.
Proc Natl Acad Sci USA.
1999a;
96
2485-2490
- 36
Bock J, Braun K.
Differential emotional experience leads to pruning of dendritic spines in the forebrain
of domestic chicks.
Neural Plast.
1998;
6
17-27
- 37 Scheich H.
Morphological correlates of learning: facts, problems and propositions. In: Greenspan RJ, Kyriacou CP (Eds) Flexibility and Constraint in Behavioral Systems.
Dahlem Workshop Reports 55. Cichester New York, Brisbane, Toronto Singapore; John
Wiley & Sons 1994: 119-133
- 38 Scheich H, Wallhäußer-Franke E, Braun K.
Does synaptic selection explain auditory imprinting?. In: Squire LR, Weinberger NM, Lynch G, McGaugh JL (Hrsg) Memory: Organization and
Locus of Change. New York, Oxford; Oxford University Press 1991: 114-159
- 39 Bock J, Braun K. Juvenile emotional experience leads to changes of spine densities
in the anterior cingulate cortex of the rat. Brighton; FENS 2000: in press
- 40 Braun K, Helmeke C, Ovtsharov W, Poeggel G. Maternal deprivation induces changes
of spine and shaft synapses in the anterior cingulate cortex. Jerusalem, Israel; 5th
IBRO World Congress of Neuroscience Juli 1999: 53
- 41
Sanches-Toscano F, Sanchez M, Garzon J.
Changes in the number of denritic spines in the medial preoptic area during a premature
long-term social isolation in rats.
Neuroscience Lett.
1991;
122
1-3
- 42
Bogerts B.
Quantitativ-morphometrische Untersuchungen am Corpus geniculatum laterale und Colliculus
superior der Ratte nach vollständigem Lichtentzug.
J Hirnforsch.
1977;
18
303-319
- 43
Poeggel G, Lange E, Hase C, Metzger M, Gulyaeva N, Braun K.
Maternal separation and early social deprivation in Octodon degus: quantitative changes
of nicotinamide adenine dinucleotide phosphate-diaphorase-reactive neurons in the
prefrontal cortex and nucleus accumbens.
Neuroscience.
1999;
94
497-504
- 44
Kramer G W, Ebert M H, Lake C R, McKinney W T.
Hypersensitivity to d-amphetamine several years after early social deprivation in
rhesus monkeys.
Psychopharmacol.
1984;
82
266-271
- 45
Lewis M H, Gluck J P, Beauchamp A J, Keresztury M F, Mailman R B.
Long-term effects of early social isolation in Macaca mulatta: changes in dopamine
receptor function following apomorphine challenge.
Brain Res.
1990;
513
67-73
- 46
Martin L J, Spicer D M, Lewis M H, Gluck J P, Cork L C.
Social deprivation of infant rhesus monkeys alters the chemoarchitecture of the brain.
I. Subcortical regions.
J Neurosci.
1991;
11
3344-3358
- 47
Winterfeld K T, Teuchert-Noodt G, Dawirs R R.
Social environment alters both ontogeny of dopamine innervation of the medial prefrontal
cortex and maturation of working memory in gerbils (Meriones unguiculatus).
J Neurosci Res.
1998;
52
201-209
- 48
Braun K, Lange E, Metzger M, Poeggel G.
Maternal separation followed by early social deprivation affects the development of
monoaminergic fiber systems in the medial prefrontal cortex of Octodon degus.
Neuroscience.
2000;
95
309-318
- 49
Gruss M, Braun K.
Distinct activation of monoaminergic pathways in chick brain in relation to auditory
imprinting and stressful situations: a microdialysis study.
Neuroscience.
1997;
76
891-9
- 50
Bickerdike M J, Wright I K, Marsden C A.
Social isolation attenuates rat forebrain 5-HT release induced by KCl stimulation
and exposure to novel environment.
Behav Pharmacol.
1993;
4
231-236
- 51
Baumann B, Danos P, Diekmann S, Krell D, Bielau, H, Geretsegger Ch, Wurthman C, Bernstein H-G,
Bogerts B.
Tyrosine hydroxylase immunoreactivity in the locus coeruleus is reduced in depressed
non-suicidal patients but normal in depressed suicide patients.
Eur Arch Psychiatry Clin Neurosci.
1999a;
249
212-219
- 52
Baumann B, Danos P, Krell D, Diekmann S, Leschinger A, Stauch R, Wurthmann C, Bernstein H-G,
Bogerts B.
Reduced Volume of Limbic System-Affiliated Basal Ganglia in Mood Disorders: Preliminary
Data From a Postmortem Study.
J Neuropsychiatry Clin Neurosci.
1999b;
11
171-77
- 53
Rakic P.
Specification of cerebral cortical areas.
Science.
1988;
241
170-176
- 54
Molliver M E, Kostovic I, van der Loos H.
The development of synapses in cerebral cortex of the human fetus.
Brain Res.
1973;
50
403-407
- 55
Huttenlocher P R.
Synaptic densities in human frontal cortex - developmental changes and effects of
aging.
Brain Res.
1979;
163
195-205
- 56
Huttenlocher P R, deCourtier C, Garey L, van der Loos H.
Synaptogenesis in human visual cortex - evidence for synapse elimination during normal
development.
Neuroscience Lett.
1982;
33
247-252
- 57 Linden M.
Lerntheoretisch orientierte Psychotherapie: theoretische und empirische Grundlagen
sowie klinische Anwendungsprinzipiender kognitiven Verhaltenstherapie. In: Möller H-J, Laux G, Kapfhammer H-P Psychiatrie und Psychotherapie. Berlin; Springer
2000: 656-685
- 58
Agid O, Shapira H, Zislin J, Ritser M, Hanin B, Murad H, Troudart T, Bloch M, Heresco-Levy U,
Lerer B.
Environment and vulnerability to major psychiatric illness: a case control study of
early parental loss in major depression, bipolar disorder and schizophrenia.
Mol Psychiatry.
1999;
4
163-72
- 59
Drayer N, Langeland W.
Childhood trauma and preceived parental dysfunction in the etiology of dissociative
symptoms in psychiatric inpatients.
Am J Psychiatry.
1999;
156
379-385
- 60
Furukawa T, Mizukawa R, Hirai T, Fujihara S, Kitamura T, Takahashi K.
Childhood parental loss and schizophrenia: evidence against pathogenic but for some
pathoplastic effects.
Psychiatry Res.
1998;
81
353-362
- 61
Furukawa T A, Ogura A, Hirai T, Fujihara S, Kitamura T, Takahashi K.
Early parental separation experiences among patients with bipolar disorder and major
depression: a case-control study.
J Affective Disorders.
1999;
52
85-91
- 62
Keshavan M S, Anderson S, Pettegrew J W.
Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg
hypothesis revisited.
J Psychiatr Res.
1994;
28
239-265
- 63
Gabriel S M, Haroutunian V, Powchick P, Honer W G, Davidson M, Davies P, Davis K L.
Increased concentrations of presynaptic proteins in the cingulate cortex of subjects
with schizophrenia.
Arch Gen Psychiatr.
1997;
54
559-566
- 64
Eastwood S L, Harrison P J.
Detection and quantification of hippocampal synaptophysin messenger RNA in schizophrenia
using autoclaved, formalin-fixed, paraffin wax-embedded sections.
Neuroscience.
1999;
93
99-106
- 65
Highley J R, Esiri M M, McDonald B, Cortina-Borja M, Herron B M, Crow T J.
The size and fibre composition of the corpus callosum with respect to gender and schizophrenia:
a post-mortem study.
Brain.
1999;
122
99-110
- 66
Honer W G, Falkai P, Chen C, Arango V, Mann J J, Dwork A J.
Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental
illness.
Neuroscience.
1999;
91
1247-1255
- 67
Karson C N, Mrak R E, Schluterman K O, Sturner W Q, Sheng J G, Griffin W S.
Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in
schizophrenia: a possible neurochemical basis for „hypofrontality”.
Mol Psychiatry.
1999;
4
39-45
- 68
Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries C G, Blennow K.
The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus
and related cortical brain regions in schizophrenic brains.
Schizophr Res.
1999;
40
23-9
- 69
Bogerts B.
Plastizität von Hirnstruktur und -funktion als neurobiologische Grundlage der Psychotherapie.
Z Klin Psychologie, Psychiatrie, Psychotherapie.
1996;
44
243-252
- 70
Bogerts B.
The temporolimbic system theory of positive schizophrenic symptoms.
Schizophrenia Bull.
1997;
23
423 - 435
- 71
Aldenhoff J.
Überlegungen zur Psychobiologie der Depression.
Nervenarzt.
1997;
68
379-389
- 72
Uno H, Tarara R, Else J G, Suleiman M A, Sapolsky R M.
Hippocampal damage associated with prolonged and fatal stress in primates.
J Neuroscience.
1989;
9
1705-1711
- 73
Meyer G, Ferres-Torres R, Mas M.
The effects of puberty and castration on hippocampal dendritic spines of mice. A Golgi
study.
Brain Res.
1978;
155
108-112
- 74
Gould E, Woolley C S, Frankfurt M, McEwen B S.
Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in
adulthood.
J Neurosci.
1990;
10
1286-1291
- 75
Kempermann G, Gage F H.
Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term
stimulation and stimulus withdrawal.
Hippocampus.
1999;
9
321-32
- 76
Dawirs R R, Hildebrandt K, Teuchert-Noodt G.
Adult treatment with haloperidol increases dentate granule cell proliferation in the
gerbil hippocampus.
J Neural Transm.
1998;
105
317-27
- 77
Xerri C, Merzenich M M, Jenkins W, Santucci S.
Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition
in adult monkeys.
Cereb Kortex.
1999;
9
264-276
- 78
Vrensen G, Nunez-Cardozo J.
Changes in size and shape of synaptic connections after visual training: an ultrastructural
approach of synaptic plasticity.
Brain Res.
1981;
218
79-97
- 79
Black J E, Isaacs K R, Anderson B J, Alcantara A A, Greenough W T.
Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar
cortex of adult rats.
Proc Natl Acad Sci USA.
1990;
87
5568-5572
- 80
Greenough W T, Larson J R, Withers G S.
Effects of unilateral and bilateral training in a reaching task on dendritic branching
of neurons in the rat motor-sensory forelimb cortex.
Behavioral and Neural Biol.
1985;
44
301-314
- 81
Jones T A, Klintsova A Y, Kilman V L, Sirevaag A M, Greenough W T.
Induction of multiple synapses by experience in the visual cortex of adult rats.
Neurobiol of Learn And Mem.
1997;
68
13-20
- 82
Moser M B, Trommald M, Andersen P.
An increase in dendritic spine density on hippocampal pyramidal cells following spatial
learning in adult rats suggests the formation of new synapses.
Proc Natl Acad Sci USA.
1994;
91
12673-12675
- 83 Freud S. Neue Folge von Vorlesungen zur Einführung in die Psychoanalyse. GW Bd
15. 1933
1 Die Arbeiten der Autoren werden gefördert durch den Sonderforschungsbereich 426 der
Deutschen Forschungsgemeinschaft „Funktion und Dysfunktion des limbischen Systems”.
1
PD Dr. Katharina Braun
Leibniz-Institut für Neurobiologie
Brenneckestraße 6
39118 Magdeburg
eMail: braun@ifn-magdeburg
Prof. Dr. Bernhard Bogerts
Klinik für Psychiatrie, Psychotherapie und
Psychosomatische Medizin Universität Magdeburg
Leipziger Straße 44
39120 Magdeburg
eMail: bernhard.bogerts@medizin.uni-magdeburg.de