Semin Reprod Med 2000; 18(1): 081-090
DOI: 10.1055/s-2000-13478
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Role of HOX Genes in the Development and Function of the Female Reproductive Tract

Hugh S. Taylor
  • Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Yale University School of Medicine, New Haven, Connecticut
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

HOX genes are a family of regulatory genes that encode transcription factors and are essential during embryonic development. These genes are highly conserved between species such that all metazoans possess a common genetic system for embryonic patterning. This system is conserved in the reproductive tract, where HOX genes are involved in the development of the müllerian system. The reproductive tract is unusual in that HOX genes continue to be expressed in the adult. HOX genes are essential both for appropriate reproductive tract development and for adult function. This article reviews the role of HOX genes in the development of the reproductive tract and the effect of HOX gene mutations on the development of the reproductive tract in both mice and humans. It then reviews the role and regulation of HOX genes in the adult function of the reproductive tract, specifically evidence that HOX genes are important for human endometrial development and receptivity.

REFERENCES

  • 1 McGinnis W, Krumlauf R. Homeobox genes and axial patterning.  Cell . 1992;  68 283-302
  • 2 Taylor H S, Vanden Heuvel G, Igarashi P. A conserved Hox axis in the mouse and human reproductive system: late establishment and persistent expression of the Hoxa cluster genes.  Biol Reprod . 1997;  57 1338-1345
  • 3 Taylor H S, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium.  J Clin Invest . 1998;  101 1379-1384
  • 4 Taylor H S, Igarashi P, Olive D, Arici A. Sex steroids mediate HOXA11 expression in human peri-implantation endometrium.  J Clin Endocrinol Metab . 1999;  84 1129-1135
  • 5 Bateson W. Materials for the Study of Variation.  London: Macmillan; 1894
  • 6 Lewis E B. A gene complex controlling segmentation in Drosophila Nature .  1978;  276 565-570
  • 7 Kaufman T C, Lewis R, Wakimoto B. Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homeotic gene complex in polytene chromosome interval 84A-B.  Genetics . 1980;  94 115-133
  • 8 McGinnis W, Levine M, Hafen E, Kuroiwa A, Gehring W J. A conserved DNA sequence found in homeotic genes of the Drosophila antennapedia and bithorax complexes.  Nature . 1984;  308 428-433
  • 9 McGinnis W, Levine M, Hafen E, Kuroiwa A, Gehring W J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans.  Cell . 1984;  37 403-408
  • 10 Scott M P, Weiner A. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila Proc Natl Acad Sci U S A .  1984;  81 4115-4119
  • 11 Levine M, Hoey T. Homeobox proteins as sequence specific transcription factors.  Cell . 1998;  55 537-540
  • 12 Krumlauf R. Hox genes in vertebrate development.  Cell . 1994;  78 191-201
  • 13 Hunt P, Krumlauf R. Hox codes and positional specification in vertebrate embryonic axes.  Annu Rev Cell Biol . 1992;  8 227-256
  • 14 Carroll S B. Homeotic genes and the evolution of arthropods and chordates.  Nature . 1995;  376 479-485
  • 15 Holland P. Homeobox genes in vertebrate evolution.  Bioessays . 1992;  14 267-273
  • 16 Le Mouellic H, Lallemand Y, Brulet P. Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene.  Cell . 1992;  69 251-264
  • 17 Kessel M, Gruss P. Murine developmental control genes.  Science . 1990;  249 374-379
  • 18 Ramirez-Solis R, Zheng H, Whiting J, Krumlauf R, Bradley A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments.  Cell . 1993;  73 279-294
  • 19 Condie B G, Capecchi M R. Mice with targeted disruptions in the paralogous genes Hoxa3 and Hoxd3 reveal synergistic interactions.  Nature . 1994;  370 304-307
  • 20 Davis A P, Capecchi M R. A mutational analysis of the 5′ HoxD genes: dissection of genetic interactions during limb development in the mouse.  Development . 1996;  122 1175-1185
  • 21 Nelson C E, Morgan B A, Burke A C. Analysis of Hox genes expression in the chick limb bud.  Development . 1996;  122 1449-1466
  • 22 Scott M P. Hox genes, arms, and the man.  Nat Genet . 1997;  15 117-118
  • 23 Charite J, De Graaff W, Shen S, Deschamps J. Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures.  Cell . 1994;  78 589-601
  • 24 Goff D J, Tabin C J. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth.  Development . 1997;  124 627-636
  • 25 St. Johnston D, Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo.  Cell . 1992;  68 201-219
  • 26 Driever W, Nüsslein-Volhard C. The bicoid protein determines position in the Drosophila embryo in a concentration dependent manner.  Cell . 1988;  54 95-104
  • 27 Roth S, Stein D, Nüsslein-Volhard C. A gradient of nuclear localization of the dorsal protein determines dorso-ventral pattern in the Drosophila embryo.  Cell . 1989;  59 1189-1202
  • 28 Rivera-Pomar R, Jäckle H. From gradients to stripes in Drosophila embryogenesis: filling in the gaps.  Trends Genet . 1996;  12 478-483
  • 29 Struhl G, Johnston P, Lawrence P A. Control of Drosophila body pattern by the hunchback morphogen gradient.  Cell . 1992;  69 237-249
  • 30 Small S, Levine M. The initiation of pair-rule stripes in the Drosophila blastoderm.  Curr Opin Genet Dev . 1991;  1 255-260
  • 31 Lawrence P A, Morata G. Homeobox genes: their function in Drosophila segmentation and pattern formation.  Cell . 1994;  78 181-189
  • 32 Hülskamp M, Tautz D. Gap genes and gradients: the logic behind the gaps.  Bioessays . 1991;  13 261-268
  • 33 Sham M H, Vesque C, Nonchev S. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation.  Cell . 1993;  72 183-196
  • 34 Manzanares M, Cordes S, Kwan C T, Sham M H, Barsh G S, Krumlauf R. Segmental regulation of Hoxb-3 by Kreisler.  Nature . 1997;  387 191-195
  • 35 Marshall H, Morrison A, Studer M, Pöpperl H, Krumlauf R. Retinoids and Hox genes.  FASEB J . 1996;  10 969-978
  • 36 Boncinelli E, Simeone A, Acampora D, Mavilio F. HOX gene activation by retinoic acid.  Trends Genet . 1991;  7 329-334
  • 37 Marshall H, Nonchev S, Sham M A, Muchamore I, Lumsden A, Krumlauf R. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity.  Nature . 1992;  360 737-741
  • 38 Block K, Kardana A, Igarashi P, Taylor H S. In utero diethylstilbestrol (DES) exposure alters HOX gene expression in the developing mullerian system.  FASEB J . 2000;  14 1101-1108
  • 39 Simon J. Locking in stable states of gene expression: transcriptional control during Drosophila development.  Curr Opin Cell Biol . 1995;  7 376-385
  • 40 Pirrotta V. Polycombing the genome: PcG, trxG, and chromatin silencing.  Cell . 1998;  93 333-336
  • 41 Gould A. Functions of mammalian Polycomb group and Trithorax group related genes.  Curr Opin Genet Dev . 1997;  7 488-494
  • 42 Schumacher A, Magnuson T. Polycomb- and trithorax-group genes regulate homeotic pathways and beyond.  Trend Genet . 1997;  13 167-170
  • 43 Taylor H S. A regulatory element of the empty spiracle homeobox gene is composed of three distinct conserved regions that bind regulatory proteins.  Mol Reprod Dev . 1998;  49 246-253
  • 44 Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa-10 deficient mice.  Nature . 1995;  374 460-463
  • 45 Benson G V, Lim H, Paria B C, Satokata I, Dey S K, Maas R L. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression.  Development . 1996;  122 2687-2696
  • 46 Hsieh-Li H, Witte D, Weinstein M. Hoxa-11 structure, extensive antisense transcription, and function in male and female fertility.  Development . 1995;  121 1373-1385
  • 47 Gendron R L, Paradis H, Hsieh-Li H M, Lee D W, Potter S S. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice.  Biol Reprod . 1997;  56 1097-1105
  • 48 Zakany J, Duboule D. Synpolydactyly in mice with a targeted deficiency in the HoxD complex.  Nature . 1996;  384 69-71
  • 49 Mortlock D P, Post L C, Innis J W. The molecular basis of hypodactyly (Hd): a deletion in Hoxa13 leads to arrest of digital arch formation.  Nat Genet . 1996;  13 284-289
  • 50 Post L C, Innis J W. Altered Hox expression and increased cell death distinguish Hypodactyly from Hoxa13 null mice.  Int J Dev Biol . 1999;  43 287-294
  • 51 Post L C, Margulies E H, Kuo A, Innis J W. Severe limb defects in Hypodactyly mice result from the expression of a novel, mutant Hoxa13 protein.  Dev Biol . 2000;  217 290-300
  • 52 Post L C, Innis J W. Infertility in adult hypodactyly mice is associated with hypoplasia of distal reproductive structures.  Biol Reprod . 1999;  61 1402-1408
  • 53 Veraksa A, Campo M D, McGinnis W. Developmental patterning genes and their conserved functions: from model organisms to humans.  Mol Genet Metab . 2000;  69 85-100
  • 54 Muragaki Y, Mundlos S, Upton J, Olsen B R. Altered growth and branching patterns in synopolydactyly caused by mutations in HOXD13 Science .  1996;  272 548-551
  • 55 Akarsu A N, Stoilov I, Yilmaz E, Sayli B S, Sarfarazi M. Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families.  Hum Mol Genet . 1996;  5 945-952
  • 56 Goodman F R, Mundlos S, Muragaki Y. Synpolydactyly phenotype correlate with size of expansions in HOXD13 polyalanine tract.  Proc Natl Acad Sci U S A . 1997;  94 7458-7463
  • 57 Johnson K R, Sweet H O, Donahue L R, Ward-Bailey P, Bronson R T, Davisson M T. A new spontaneous mouse mutation of Hoxd13 with a polyalanine expansion and phenotype similar to human synpolydactyly.  Hum Mol Genet . 1998;  7 1033-1038
  • 58 Goodman F, Giovannuccci-Uzielli M L, Hall C, Reardon W, Winter R, Scambler P. Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families.  Am J Hum Genet . 1998;  63 992-1000
  • 59 Del Campo M, Jones M C, Veraksa A N. Monodactylous limbs and abnormal genitalia are associated with hemizygosity for human 2q31 region that includes the HOXD cluster.  Am J Hum Genet . 1999;  65 104-110
  • 60 Mortlock D P, Innis J W. Mutation of HOXA13 in hand-foot-genital syndrome.  Nat Genet . 1997;  15 179-180
  • 61 Stelling J, Bhagauath B, Gray M, Reindollar R. HOXA13 homeodomain mutation analysis in patients with mullerian system anomalies.  J Soc Gynecol Invest. 1999;  5(suppl) 148 abstract
  • 62 Devriendt K, Jaeken J, Matthijs G. Haploinsufficiency of the HOXA gene cluster, in a patient with hand-foot-genital syndrome, velopharyngeal insufficiency, and persistent patent ductus botalli [letter].  Am J Hum Genet . 1999;  65 249-251
  • 63 Goodman F R, Donnenfeld A E, Feingold M, Fryns J P, Hennekan R CM, Scambler P J. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome.  Am J Hum Genet . 2000;  67 197-202
  • 64 Post L C, Innis J W. Altered Hox expression and increased cell death distinguish Hypodactyly from Hoxa13 null mice.  Int J Dev Biol . 1999;  43 287-294
  • 65 Mortlock D P, Sateesh P, Innis J W. Evolution of N-terminal sequences of the vertebrate HOXA13 protein.  Mamm Genome . 2000;  11 151-8
  • 66 Magli M C, Barba P, Celetti A, DeVita G, Cillo C, Boncinelli E. Coordinate regulation of HOX genes in human hematopoietic cells.  Proc Natl Acad Sci U S A . 1991;  88 6348-6352
  • 67 Lawrence H J, Helgason C D, Sauvageau G. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis.  Blood . 1997;  89 1922-1930
  • 68 Borrow J, Shearman A M, Stanton Jr P V. The t(7;11) (p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9.  Nat Genet . 1996;  12 159-167
  • 69 van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C. The role of homeobox genes in normal hematopoiesis and hematological malignancies.  Leukemia . 1999;  13 1675-1690
  • 70 Taylor H S. The role of Hox genes in human implantation.  Hum Reprod Update . 2000;  6 75-79
  • 71 Taylor H S, Bagot C, Kardana A, Olive D L, Arici A. Hox gene expression is altered in the endometrium of women with endometriosis.  Hum Reprod . 1999;  14 1328-1331
  • 72 Bagot C N, Troy P J, Taylor H S. Alteration of maternal HOXA10 expression by in vivo gene transfection affects implantation.  Gene Ther . 2000;  7 1378-1384
  • 73 Conlon R A. Retinoic acid and pattern formation in vertebrates.  Trends Genet . 1995;  11 314-319
  • 74 Ma L, Benson G V, Lim H, Dey S K, Maas R L. Abdominal B (AbdB) Hoxa genes: regulation in the adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol.  Devel Biol . 1998;  197 141-154
    >