Semin Reprod Med 2000; 18(2): 219-224
DOI: 10.1055/s-2000-12560
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Human Embryonic Stem Cell Technology

Jeffrey M. Jones1 , James A. Thomson2
  • 1Andrology and IVF Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin Medical School
  • 2Wisconsin Regional Primate Research Center, Madison, Wisconsin
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Undifferentiated human embryonic stem (ES) cells can be cultured indefinitely and yet maintain the potential to form almost every cell in the adult human body. Therefore ES cells provide a model for understanding the differentiation and function of human tissue, offer new strategies for drug discovery and testing, and have the potential to provide new transplantation therapies for the treatment of a wide variety of human diseases. In this article, we describe the origin and properties of human ES cells, distinguish ES cells from other pluripotent stem cell lines, and discuss their implications for basic research and human medicine.

REFERENCES

  • 1 Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos.  Nature . 1981;  292 154-156
  • 2 Martin G. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.  Proc Nat Acad Sci U S A . 1981;  78 7634-7638
  • 3 Andrews P W, Damjanov I, Simon D. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2.  Lab Invest . 1984;  50 147-162
  • 4 Damjanov I, Solter D. Animal model of human disease: teratoma and teratocarcinoma.  Am J Pathol . 1976;  83 241-244
  • 5 Roach S, Cooper S, Bennett W, Pera M F. Cultured cell lines from human teratomas: windows into tumour growth and differentiation and early human development.  Eur Urol . 1993;  23 82-88
  • 6 Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.  Cell . 1992;  70 841-847
  • 7 Resnick J L, Bixler L S, Cheng L, Donovan P J. Long-term proliferation of mouse primordial germ cells in culture.  Nature . 1992;  359 550-551
  • 8 Shamblott M J, Axelman J, Wang S. Derivation of pluripotent stem cells from cultured human primordial germ cells.  Proc Nat Acad Sci U S A . 1998;  95 13726-13731
  • 9 Gardner D K, Vella P, Lane M, Wagley L, Schlenker T, Schoolcraft W B. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers.  Fertil Steril . 1998;  69 84-88
  • 10 Thomson J A, Itskovitz-Eldor J, Shapiro S S. Embryonic stem cell lines derived from human blastocysts.  Science . 1998;  282 1145-1147
  • 11 Andrews P W, Banting G, Damjanov I, Arnaud D, Avner P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells.  Hybridoma . 1984;  3 347-361
  • 12 Andrews P W, Oosterhuis J, Damjanov I. Cell lines from human germ cell tumors. In: Robertson E, ed. Teratocarcinomas and Embryonic Stem Cells: A Practical Approach Oxford: IRL Press 1987: 207-246
  • 13 Kannagi R, Cochran N A, Ishigami F. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells.  EMBO J . 1983;  2 2355-2361
  • 14 Solter D, Knowles B B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1).  Proc Natl Acad Sci U S A . 1978;  75 5565-5569
  • 15 Wenk J, Andrews P W, Casper J. Glycolipids of germ cell tumors: extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells.  Intl J Cancer . 1994;  58 108-115
  • 16 Benirschke K, Kaufmann P. Pathology of the Human Placenta.  New York: Springer-Verlag; 1990
  • 17 Luckett W P. The development of primordial and definitive amniotic cavities in early rhesus monkey and human embryos.  Am J Anat . 1975;  144 149-168
  • 18 Luckett W P. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos.  Am J Anat . 1978;  152 59-98
  • 19 Brüstle O, Jones K N, Learish R D. Embryonic stem cell-derived glial precursors: a source of myelinating transplants.  Science . 1999;  285 751-753
  • 20 Brüstle O, Spiro A C, Karran K, Choudhary K, O'Kabe S, McKay R DG. In vitro generated neural precursors participate in mammalian brain development.  Proc Natl Acad Sci U S A . 1997;  94 14809-14814
  • 21 Keller G M. In vitro differentiation of embryonic stem cells.  Curr Opin Cell Biol . 1995;  7 862-869
  • 22 Klug M G, Soonpaa M H, Koh G Y, Field L J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts.  J Clin Invest . 1996;  98 216-224
  • 23 Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K HS. Viable offspring derived from fetal and adult mammalian cells.  Nature . 1997;  385 810-813
  • 24 Thomson J A, Kalishman J, Golos T G. Isolation of a primate embryonic stem cell line.  Proc Natl Acad Sci U S A . 1995;  92 7844-7848
  • 25 Thomson J A, Marshall V S. Primate embryonic stem cells.  Curr Top Dev Biol . 1998;  38 133-165
  • 26 Burns R S, Chiueh C C, Markey S P, Ebert M H, Jacobowitz D M, Kopin I J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.  Proc Natl Acad Sci U S A . 1983;  80 4546-4550
  • 27 Jones C W, Reynolds W A, Hoganson G E. Streptozotocin diabetes in the monkey: plasma levels of glucose, insulin, glucagon, and somatostatin, with corresponding morphometric analysis of islet endocrine cells.  Diabetes . 1980;  29 536-546
  • 28 Meng L, Ely J J, Stouffer R L, Wolf D P. Rhesus monkeys produced by nuclear transfer.  Biol Reprod . 1997;  57 454-459
    >