Fortschr Neurol Psychiatr 2000; 68(1): 37-47
DOI: 10.1055/s-2000-11641
ORIGINALARBEIT
Georg Thieme Verlag Stuttgart ·New York

Physiologie und Untersuchungsmethoden des Baroreflexes

Baroreflex Physiology and Examination TechniquesM. J. Hilz, B. Stemper, B. Neundörfer
  • Neurologische Klinik mit Poliklinik(Direktor: Prof. Dr. B. Neundörfer) der Friedrich-Alexander-Universität Erlangen-Nürnberg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Dezember 2000 (online)

Zusammenfassung:

Der Barorezeptorenreflex hat entscheidenden Anteil an der Konstanthaltung der Herz-Kreislauf-Regulation besonders bei akuter orthostatischer Belastung. Die Stimulation der Barorezeptoren vor allem im Karotissinus und Aortenbogen durch Blutdruckanstieg bzw. das abrupte Aussetzen dieser Stimulation bei Blutdruckabfall werden über die Nervi glossopharyngeus und vagus an den Nucleus tractus solitarii vermittelt und über weitere zentrale Schaltstellen wie den Nucleus ambiguus, die rostrale ventrale Medulla oblongata, den dorsalen Vaguskern, parabrachiale und paraventrikuläre Kerne efferent parasympathisch zum Herzen und sympathisch zum Herzen und den peripheren Gefäßen geleitet. Der Regelkreis beantwortet Blutdruckanstieg mit Minderung des peripheren Sympathikotonus und Zunahme kardiovagaler Aktivität. Blutdruckabfall hat die umgekehrte Wirkung. Die Barorezeptoren zeigen ein proportional-differentielles Feuerungsverhalten mit Adaptation und Resetting sowie Hysteresisverhalten, d. h. stärkerer Feuerungsrate bei raschem Blutdruckanstieg als bei seiner Rückkehr zum Ausgangswert. Die Rezeptoren interagieren u. a. mit der Atmung, den Chemorezeptoren, physischer Belastung und untereinander. Das Zusammenwirken mit Chemorezeptoren ist z. B. bei chronischer Herzinsuffizienz, bei Schlafapnoe-Syndromen oder dem Sudden Infant Death Syndrom gestört und kann letale Komplikationen wie ungezügelte Bradykardien verursachen. Die exakte Beurteilung der Barorezeptoren gewinnt daher zunehmende Bedeutung für die Diagnose und das Verständnis pathophysiologischer Zusammenhänge bei zahlreichen neurologischen und kardiologischen Erkrankungen wie der diabetisch autonomen Neuropathie, dem Guillain-Barré-Syndrom, arterieller Hypertonie, Herzinsuffizienz und vermutlich bei allen „Stroke”-Patienten. Neben der pharmakologischen Prüfung stehen die Untersuchung mittels „neck suction”, d. h. Unterdruckstimulation der Halsregion und der Karotisrezeptoren sowie die computerisierte Analyse der Zusammenhänge zwischen spontaner Blutdruck- und Herzfrequenzmodulation zur Verfügung.

The baroreflex is of major importance for the moment-to-moment maintenance of arterial pressure particularly during orthostatic stress. Blood pressure increase stimulates the receptors e. g. in the carotid sinuses and the aortic arch, and rapidly increases the receptor discharge rate. Blood pressure decrease induces arrest of impulse transmission to the nucleus of the solitary tract. The impulses are modulated by the nucleus ambiguus, the rostral ventrolateral medulla, the dorsal nucleus of the vagus nerve, parabrachial and paraventricular nuclei and other central structures. Blood pressure increase induces an increase of cardiovagal activity resulting in cardiodeceleration and a decrease of sympathetic peripheral vasoconstrictor outflow. The receptor firing rates show adaptation and resetting to longer lasting blood pressure changes, hysteresis, i. e. firing rates that are higher with rapid blood pressure increase than during the return to baseline pressure. The receptors interact with respiration, chemoreceptor stimulation, central stimuli, exercise and sleep, etc. Baroreceptor function and interaction e. g. with chemoreceptors is compromised in diseases such as diabetic autonomic neuropathy, Guillain-Barré syndrome, arterial hypertension, heart failure and probably in most stroke patients. Fatal complications may result from baroreceptor malfunction. Subtle analysis of the baroreflex is therefore crucial for a refined pathophysiological understanding of these diseases. Pharmacological testing and „neck chamber” negative pressure stimulation of the receptors are as useful as the non-invasive computerized analysis of the interaction of spontaneous blood pressure and heart rate fluctuations.

Literatur

  • 1 Smit A AJ, Wieling W, Karemaker J M. Clinical approach to cardiovascular reflex testing.  Clin Sci. 1996;  91 108-112
  • 2 Wieling W, v Lieshout J J. Maintenance of postural normotension in humans. In: Low PA (Hrsg.) Clinical autonomic disorders. Philadelphia; Lippincott-Raven 1997: 73-82
  • 3 Eckberg D L, Sleight P. Human baroreflexes in health and disease, Volume 43. New York; Oxford University Press 1992
  • 4 Parry C H. An inquiry into the symptoms and causes of the syncope anginosa, commonly called angina pectoris. Bath; R Cruttwell 1799
  • 5 Czermak J. Über mechanische Vagus-Reizung beim Menschen. Jenaische Zeitschrift für Medicin und Naturwissenschaft 1866: 384-386
  • 6 Hering H E. Der Sinus caroticus an der Ursprungsstelle der Carotis interna als Ausgangsort eines hemmenden Herzreflexes und eines depressorischen Gefäßreflexes.  Münchener Medizinische Wochenschrift. 1924;  71 701-704
  • 7 Hering H E. Die Sinusreflexe vom Sinus caroticus werden durch einen Nerven (Sinusnerv) vermittelt, der ein Ast des Nervus glossopharyngeus ist.  Münchener Medizinische Wochenschrift. 1924;  71 1265-1266
  • 8 Koch E. Klinische Beobachtungen zum Karotisdruckversuch.  Münchener Medizinische Wochenschrift. 1923;  43 1316-1318
  • 9 Koch E. Die reflektorische Selbststeuerung des Kreislaufes. In: Kisch B (Hrsg.) Ergebnisse der Kreislaufforschung. Dresden; Steinkopff 1931
  • 10 Ciriello J, Rohlicek C V, Polosa C. Aortic baroreceptor reflex pathway: a functional mapping using [3H]2-deoxyglucose autoradiography in the rat.  J Auton Nerv Syst. 1983;  8 111-128
  • 11 Rees P M. Observations on the fine structure and distribution of persumptive baroreceptor nerves at the carotid sinus.  J Comp Neurol. 1967;  131 517-548
  • 12 Rees P M. The distribution of biogenic amines in the carotid bifurcation region.  J Physiol (Lond). 1967;  193 245-253
  • 13 Reis D J, Fuxe K. Adrenergic innervation of the carotid sinus.  Am J Physiol. 1968;  215 1054-1057
  • 14 Stanton P D, Hinrichsen C F. Monoaminergic innervation of the carotid sinus in mammals: a histochemical study.  Acta Anat. 1980;  108 34-44
  • 15 Lipski J, Trzebski A. Bulbo-spinal neurons activated by baroreceptor afferents and their possible role in inhibition of preganglionic sympathetic neurons.  Pflugers Arch. 1975;  356 181-192
  • 16 Lipski J, McAllen R M, Spyer K M. The sinus nerve and baroreceptor input to the medulla of the cat.  J Physiol (Lond). 1975;  251 61-78
  • 17 Miura M, Reis D J. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro- and chemoreceptors.  J Physiol (Lond). 1972;  223 525-548
  • 18 Panneton W M, Loewy A D. Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat.  Brain Res. 1980;  191 239-244
  • 19 Bennaroch E E. Central autonomic network: functional organization and clinical correlations. Futura Publishing Company, Inc. Armonk 1997
  • 20 Ciriello J, Rohlicek C V, Poulsen R S, Polosa C. Deoxyglucose uptake in the rat thoracolumbar cord during activation of aortic baroreceptor afferent fibers.  Brain Res. 1982;  231 240-245
  • 21 Kostreva D R. Functional mapping of cardiovascular reflexes and the heart using 2-[14C]deoxyglucose.  Physiologist. 1983;  26 333-350
  • 22 Eckberg D L, Fritsch J M. How should human baroreflexes be tested.  News Physiol Sci. 1993;  8 7-12
  • 23 Landgren S. On the excitation mechanism of the carotid baroreceptor.  Acta Physiol Scand. 1952;  26 1-34
  • 24 Eckberg D L. Baroreflex inhibition of the human sinus node: importance of stimulus intensity, duration, and rate of pressure change.  J Physiol (Lond). 1977;  269 561-577
  • 25 Coleridge H M, Coleridge J C, Poore E R, Roberts A M, Schultz H D. Aortic wall properties and baroreceptor behaviour at normal arterial pressure and in acute hypertensive resetting in dogs.  J Physiol (Lond). 1984;  350 309-326
  • 26 Korner P I, West M J, Shaw J, Uther J B. “Steady-state” properties of the baroreceptor-heart rate reflex in essential hypertension in man.  Clin Exp Pharmacol Physiol. 1974;  1 65-76
  • 27 Bronk D W, Stella G. Afferent impulses in the carotid sinus nerve. I. The relation of the discharge from single end organs to arterial blood pressure.  Journal of Cellular and Comparative Physiology. 1932;  1 113-130
  • 28 Bronk D W, Stella G. The response to steady pressures of single end organs in the isolated carotid sinus.  Am J Physiol. 1935;  110 708-714
  • 29 Somers V K, Abboud F M. Baroreflexes in health and disease. In: Levy MN, PJ Schwartz (Hrsg.) Vagal control of the heart: experimental basis and clinical implications. Armonk, NY: Futura Publishing Company, Inc 1994: 381-402
  • 30 Thames M D, Dibner-Dunlap M E, Smith M L. Mechanisms of arterial baroreflex control. In: Levy MN, PJ Schwartz (Hrsg.) Vagal control of the heart: experimental basis and clinical implications. Armonk, NY: Futura Publishing Company, Inc 1994: 369-380
  • 31 Eckberg D L, Kifle Y T, Roberts V L. Phase relationship between normal human respiration and baroreflex responsiveness.  J Physiol (Lond). 1980;  304 489-502
  • 32 Trzebski A, Raczkowska M, Kubin L. Carotid baroreceptor reflex in man, its modulation over the respiratory cycle.  Acta Neurobiol Exp. 1980;  40 807-820
  • 33 Heistad D D, Abboud F M, Dickinson W. Richards Lecture: Circulatory adjustments to hypoxia.  Circulation. 1980;  61 463-470
  • 34 Somers V K, Abboud F M. Chemoreflex control of cardiac vagal activity. In: Levy MN, PJ Schwartz (Hrsg.) Vagal control of the heart: experimental basis and clinical implications. Armonk, NY: Futura Publishing Company, Inc 1994: 403-416
  • 35 Somers V K, Dyken M E, Mark A L, Abboud F M. Parasympathetic hyperresponsiveness and bradyarrhythmias during apnoea in hypertension.  Clin Auton Res. 1992;  2 171-176
  • 36 Bristow J D, Brown Jr E B, Cunningham D J, Goode R C, Howson M G, Pickering T G, Sleight P. Changes in baroreflex sensitivity at the transitions between rest and exercise.  J Physiol (Lond). 1969;  202 84-85P
  • 37 Bristow J D, Brown E B, Cunningham D J, Goode R C, Howson M G, Pickerings T G, Sleight P. Changes in the baroreceptor-cardiac reflex in exercise.  J Physiol (Lond). 1969;  201 106-107P
  • 38 Ferguson D W, Abboud F M, Mark A L. Relative contribution of aortic and carotid baroreflexes to heart rate control in man during steady state and dynamic increases in arterial pressure.  J Clin Invest. 1985;  76 2265-2274
  • 39 Mancia G, Ferrari A, Gregorini L, Valentini R, Ludbrook J, Zanchetti A. Circulatory reflexes from carotid and extracarotid baroreceptor areas in man.  Circ Res. 1977;  41 309-315
  • 40 Guo G B, Thames M D, Abboud F M. Differential baroreflex control of heart rate and vascular resistance in rabbits. Relative role of carotid, aortic, and cardiopulmonary baroreceptors.  Circ Res. 1982;  50 554-565
  • 41 Smyth H S, Sleight P, Pickering G W. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity.  Circ Res. 1969;  24 109-121
  • 42 Eckberg D L. Nonlinearities of the human carotid baroreceptor-cardiac reflex.  Circ Res. 1980;  47 208-216
  • 43 Rea R F, Eckberg D L. Carotid baroreceptor-muscle sympathetic relation in humans.  Am J Physiol. 1987;  253 R929-R934
  • 44 Imaizumi T, Brunk S D, Gupta B N, Thames M D. Central effect of intravenous phenylephrine on baroreflex control of renal nerves.  Hypertension. 1984;  6 906-914
  • 45 Hjemdahl P, Daleskog M, Kahan T. Determination of plasma catecholamines by high performance liquid chromatography with electrochemical detection: comparison with a radioenzymatic method.  Life Sci. 1979;  25 131-138
  • 46 Peveler R C, Bergel D H, Robinson J L, Sleight P. The effect of phenylephrine upon arterial pressure, carotid sinus radius and baroreflex sensitivity in the conscious greyhound.  Clin Sci. 1983;  64 455-461
  • 47 White C W, Eckberg D L, Inasaka T. Direct effects of methoxamine and phenylephrine on sinus node function.  Am J Cardiol. 1973;  31 164
  • 48 Eckberg D L, Eckberg M J. Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli.  Am J Physiol. 1982;  242 H638-644
  • 49 Ferrari A U, Cavallazzi A, Gregorini L, Perondi R, Daffonchio A, Mancia G. Effects of altering the interval between the stimulus and the reflex response in the analysis of the baroreceptor control of the sinus and atrioventricular nodes in man.  Cardiovasc Res. 1987;  21 385-390
  • 50 Pickering T G, Davies J. Estimation of the conduction time of the baroreceptor-cardiac reflex in man.  Cardiovasc Res. 1973;  7 213-219
  • 51 Ernsting J, Parry D J. Some observations on the effects of stimulating the stretch receptors in the carotid artery of man.  J Physiol. 1957;  136 45-46
  • 52 Bernardi L, Leuzzi S, Radaelli A, Passino C, Johnston J A, Sleight P. Low-frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: a baroreceptor or central phenomenon.  Clin Sci (Colch). 1994;  87 649-654
  • 53 Bernardi L, Passino C, Robergs R, Appenzeller O. Acute and persistent effects of a 46-kilometre wilderness trail run at altitude: cardiovascular autonomic modulation and baroreflexes.  Cardiovasc Res. 1997;  34 273-280
  • 54 Bernardi L, Bianchini B, Spadacini G, Leuzzi S, Valle F, Marchesi E, Passino C, Calciati A, Vigano M, Rinaldi M, Martinelli L, Finardi G, Sleight P. Demonstrable cardiac reinnervation after human heart transplantation by carotid baroreflex modulation of RR interval.  Circulation. 1995;  92 2895-2903
  • 55 Sopher S M, Smith M L, Eckberg D L, Fritsch J M, Dibner-Dunlap M E. Autonomic pathophysiology in heart failure: carotid baroreceptor-cardiac reflexes.  Am J Physiol. 1990;  259 H689-696
  • 56 Bernardi L, Hayoz D, Wenzel R, Passino C, Calciati A, Weber R, Noll G. Synchronous and baroreceptor-sensitive oscillations in skin microcirculation: evidence for central autonomic control.  Am J Physiol. 1997;  273 H1867-1878
  • 57 Saul J P, Berger R D, Albrecht P, Stein S P, Chen M H, Cohen R J. Transfer function analysis of the circulation: unique insights into cardiovascular regulation.  Am J Physiol. 1991;  261 H1231-1245
  • 58 Sleight P, La Rovere M T, Mortara A, Pinna G, Maestri R, Leuzzi S, Bianchini B, Tavazzi L, Bernardi L. Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain.  Clin Sci (Colch). 1995;  88 103-109
  • 59 Ludbrook J, Mancia G, Ferrari A, Zanchetti A. The variable-pressure neck-chamber method for studying the carotid baroreflex in man.  Clin Sci Mol Med. 1977;  53 165-171
  • 60 Shubrooks Jr S J. Carotid sinus counterpressure as a baroreceptor stimulus in the intact dog.  J Appl Physiol. 1972;  32 12-19
  • 61 Thron H L, Brechmann W, Wagner J, Keller K. [Quantitative studies on the importance of vasodilator receptors in the skin during circulatory homeostasis in waking humans. I. Character of the arterial blood pressure and heart rate with respect to gradual transmural blood pressure change in the carotid sinus region].  Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;  293 68-99
  • 62 Robbe H W, Mulder L J, Ruddel H, Langewitz W A, Veldman J B, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis.  Hypertension. 1987;  10 538-543
  • 63 Weise F, Laude D, Girard A, Zitoun P, Siche J P, Elghozi J L. Effects of the cold pressor test on short-term fluctuations of finger arterial blood pressure and heart rate in normal subjects.  Clin Auton Res. 1993;  3 303-310
  • 64 Fritsch J M, Eckberg D L, Graves L D, Wallin B G. Arterial pressure ramps provoke linear increases of heart period in humans.  Am J Physiol. 1986;  251 R1086-1090
  • 65 Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari A U, Pedotti A, Mancia G. Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats.  Am J Physiol. 1988;  254 H377-383
  • 66 Parati G, Di Rienzo M, Bertinieri G, Pomidossi G, Casadei R, Groppelli A, Pedotti A, Zanchetti A, Mancia G. Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-aterial blood pressure monitoring in humans.  Hypertension. 1988;  12 214-222
  • 67 Ponikowski P, Chua T P, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D, Anker S D, Volterrani M, Colombo R, Mazzuero G, Giordano A, Coats A JS. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure.  Circulation. 1997;  96 2586-2594
  • 68 Tuck R R, McLeod J G. Autonomic dysfunction in Guillain-Barré syndrome.  J Neurol Neurosurg Psychiatry. 1981;  44 983-990
  • 69 Lown B, Levine S A. The carotid sinus: Clinical value of its stimulation.  Circulation. 1961;  23 766-789
  • 70 Huang S K, Ezri M D, Hauser R G, Denes P. Carotid sinus hypersensitivity in patients with unexplained syncope: clinical, electrophysiologic, and long-term follow-up observations.  Am Heart J. 1988;  116 989-996
  • 71 Madigan N P, Flaker G C, Curtis J J, Reid J, Mueller K J, Murphy T J. Carotid sinus hypersensitivity: beneficial effects of dual-chamber pacing.  Am J Cardiol. 1984;  53 1034-1040
  • 72 Trout H H d, Brown L L, Thompson J E. Carotid sinus syndrome: treatment by carotid sinus denervation.  Ann Surg. 1979;  189 575-580

Prof. Dr. med. Max J. Hilz

Neurologische Klinik mit Poliklinik der Friedrich-Alexander-

Universität Erlangen-Nürnberg

Schwabachanlage 6

D-91054 Erlangen

eMail: max.hilz@neuro.med. uni-erlangen.de

    >