Int J Sports Med 2000; 21(2): 139-145
DOI: 10.1055/s-2000-11065
Georg Thieme Verlag Stuttgart ·New York

Effect of Exogenous Creatine Supplementation on Muscle PCr Metabolism

M. Francaux1 , R. Demeure2 , J.-F. Goudemant3 , J. R. Poortmans4
  • 1 Institut d'Education Physique et de Réadaptation, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
  • 2 Unité de Résonance Magnétique Biomédicale, Université Catholique de Louvain, Bruxelles, Belgium
  • 3 Département de Chimie Organique, Université de Mons-Hainaut, Mons, Belgium
  • 4 Institut Supérieur d'Education Physique et de Kinésithérapie, Université Libre de Bruxelles, Bruxelles, Belgium
Further Information

Publication History

Publication Date:
31 December 2000 (online)

31P NMR was used to assess the influence of two weeks creatine supplementation (21 g · d-1) on resting muscle PCr concentration, on the rate of PCr repletion (Rdepl), and on the half-time of PCr repletion (t1/2). Body mass (BM) and volume of body water compartments were also estimated by impedance spectroscopy. Fourteen healthy male subjects (20.8 ± 1.9 y) participated in this double-blind study. PCr was measured using a surface coil placed under the calf muscle, at rest and during two exercise bout the duration of which was 1 min. They were interspaced by a recovery of 10 min. The exercises comprised of 50 plantar flexions-extensions against weights corresponding to 40 % and 70 % of maximal voluntary contraction (MVC), respectively. Creatine supplementation increased resting muscle PCr content by ∼20 % (P = 0.002). Rdepl was also increased by ∼15 % (P < 0.001) and ∼10 % (P = 0.026) during 40 % and 70 % MVC exercises, respectively. No change was observed in Rrepl and t1/2. BM and body water compartments were not influenced. These results indicate that during a standardized exercise more ATP is synthesized by the CK reaction when the pre-exercise level in PCr is higher, giving some support to the positive effects recorded on muscle performance.


  • 1 Balsom P D, Ekblom B, Söderlund K, Sjödin B EH. Creatine supplementation and dynamic high-intensity intermittent exercise.  Scand J Med Sci Sports. 1993;  3 143-149
  • 2 Balsom P D, Harridge S D, Soderlund K, Sjödin B, Ekblom B. Creatine supplementation per se does not enhance endurance exercise performance.  Acta Physiol Scand. 1993;  149 521-523
  • 3 Birch R, Noble D, Greenhaff P L. The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man.  Eur J Appl Physiol. 1994;  69 268-276
  • 4 Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff P L. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans.  Am J Physiol. 1996;  271 E31-E37
  • 5 Cooke W H, Grandjean P W, Barnes W S. Effect of oral creatine supplementation on power output and fatigue during bicycle ergometry.  J Appl Physiol. 1995;  78 670-673
  • 6 Earnest C P, Snell P G, Rodriguez R, Almada A L, Mitchell T L. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition.  Acta Physiol Scand. 1995;  153 207-209
  • 7 Francaux M, Poortmans J R. Effects of training and creatine supplement on muscle strength and body mass.  Eur J Appl Physiol. 1999;  80 165-168
  • 8 Goudemant J F, Francaux M, Mottet I, Demeure R, Sibomana M, Sturbois X. 31P NMR saturation transfer study of the creatine kinase reaction in human skeletal muscle at rest and during exercise.  Magn Reson Med. 1997;  37 744-753
  • 9 Greenhaff P L, Bodin K, Soderlund K, Hultmann E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis.  Am J Physiol. 1994;  266 E725-E730
  • 10 Greenhaff P L, Casey A, Short A H, Harris R, Soderlund K, Hultman E. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man.  Clin Sci. 1993;  84 563-571
  • 11 Guimbal C, Kilimann M W. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression.  J Biol Chem. 1993;  268 8418-8421
  • 12 Hannan W J, Cowen S J, Plester C E, Fearon K C, deBeau A. Comparison of bio-impedance spectroscopy and multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients.  Clin Sci. 1995;  89 651-658
  • 13 Harris R C, Hultman E, Nordesjo L O. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values.  Scand J Clin Lab Invest. 1974;  33 109-120
  • 14 Harris R C, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation.  Clin Sci. 1992;  83 367-374
  • 15 Hoffmann E K, Simonsen L O. Membrane mechanisms in volume and pH regulation in vertebrate cells.  Physiol Rev. 1989;  69 315-382
  • 16 Hultman E, Greenhaff P L. Skeletal muscle energy metabolism and fatigue during intense exercise in man.  Sci Prog. 1991;  75 361-370
  • 17 Hultman E, Soderlund K, Timmons J A, Cederblad G, Greenhaff P L. Muscle creatine loading in men.  J Appl Physiol. 1996;  81 232-237
  • 18 Ingwall J S. Creatine and the control of muscle-specific protein synthesis in cardiac and skeletal muscle.  Circ Res. 1976;  38 I115-I123
  • 19 Juhn M S, Tarnopolsky M. Oral creatine supplementation and athletic performance: a critical review.  Clin J Sport Med. 1998;  8 286-297
  • 20 Kreider R B, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, Cantler E, Almada A L. Effects of creatine supplementation on body composition, strength, and sprint performance.  Med Sci Sports Exerc. 1998;  30 73-82
  • 21 Maganaris C N, Maughan R J. Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained men.  Acta Physiol Scand. 1998;  163 279-287
  • 22 Meyer R A. A linear model of muscle respiration explains monoexponential phosphocreatine changes.  Am J Physiol. 1988;  254 C548-C553
  • 23 Rees D, Smith M B, Harley J, Radda G K. In vivo functioning of creatine phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer.  Magn Reson Med. 1989;  9 39-52
  • 24 Smith S A, Montain S J, Matott R P, Zientara G P, Jolesz F A, Fielding R A. Creatine supplementation and age influence muscle metabolism during exercise.  J Appl Physiol. 1998;  85 1349-1356
  • 25 Sora I, Richman J, Santoro G, Wei H, Wang Y, Vanderah T, Horvath R, Nguyen M, Waite S, Roeske W R. The cloning and expression of a human creatine transporter.  Biochem Biophys Res Commun. 1994;  204 419-427
  • 26 Stroud M A, Holliman D, Bell D, Green A L, Macdonald I A, Greenhaff P L. Effect of oral creatine supplementation on respiratory gas exchange and blood lactate accumulation during steady-state incremental treadmill exercise and recovery in man.  Clin Sci. 1994;  87 707-710
  • 27 Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P. Long-term creatine intake is beneficial to muscle performance during resistance training.  J Appl Physiol. 1997;  83 2055-2063
  • 28 Vandenberghe K, Van Hecke P, Van Leemputte M, Vanstapel F, Hespel P. Phosphocreatine resynthesis is not affected by creatine loading.  Med Sci Sports Exerc. 1999;  31 236-242
  • 29 Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular enery homeostasis.  Biochem J. 1992;  281 21-40

Marc Francaux

Institut d'Education Physique et de Réadaptation

Place Pierre de Coubertin - 1

B-1348 Louvain-la-Neuve


Phone: + 32 (10) 474457

Fax: + 32 (10) 472093