Subscribe to RSS

DOI: 10.1055/s-0045-1814115
Atualizações em enxertos e substitutos ósseos
Updates on Bone Grafts and SubstitutesAuthors
Suporte financeiro Os autores declaram que não receberam suporte financeiro de agências dos setores público, privado ou sem fins lucrativos para a realização deste estudo.
Resumo
Os defeitos ósseos, causados por traumatismos, infecções, neoplasias e outras condições, são comumente tratados com enxerto autólogo, que é considerado o padrão-ouro devido às suas propriedades de osteoindução, osteocondução e osteogênese. No entanto, seu uso apresenta limitações, como a disponibilidade restrita, a morbidade no local doador e o aumento do tempo cirúrgico. Como alternativas, enxertos alógenos, xenógenos e substitutos ósseos sintéticos, que incluem cerâmicas, biovidros, resinas e metais, têm sido desenvolvidos, sendo frequentemente modificados com o acréscimo de elementos osteoindutores, como fatores de crescimento e íons bioinorgânicos. O substituto ósseo ideal deve ser biocompatível, bioabsorvível, mecanicamente resistente, poroso e capaz de promover osteointegração. Embora os substitutos sintéticos tenham avançado, ainda não alcançaram a eficácia do enxerto autólogo, principalmente no que se refere à osteointegração e à viabilidade econômica. Contudo, as inovações em biologia molecular, proteínas ósseas e terapias genéticas oferecem perspectivas promissoras para o desenvolvimento de novos biomateriais. Este artigo pretende apresentar ao leitor o tema dos substitutos ósseos, com uma classificação dos grupos de materiais utilizados e as principais características de cada grupo.
Abstract
Bone defects caused by trauma infections neoplasms and other conditions are commonly treated with autologous grafts which are considered the gold standard due to their osteoinduction osteoconduction and osteogenesis properties. However their use has limitations including limited availability donor-site morbidity and increased surgical time. Alternatively allogeneic grafts xenografts and synthetic bone substitutes including ceramics bioglasses resins and metals have been developed and are often modified with osteoinductive elements such as growth factors and bioinorganic ions. The ideal bone replacement should be biocompatible bioabsorbable mechanically resistant porous and capable of promoting osseointegration. Although synthetic substitutes have advanced they have not yet achieved the effectiveness of autologous grafts especially concerning osteointegration and economic viability. However innovations in molecular biology bone proteins and gene therapies offer promising prospects for the development of new biomaterials. The current article introduces the reader to bone substitutes by presenting a classification of the materials used and the main characteristics of each group.
Disponibilidade dos dados
Os dados serão disponibilizados mediante solicitação ao autor correspondente.
Contribuições dos autores
Cada autor contribuiu individual e significativamente para o desenvolvimento deste artigo. EEE: conceptualização, validação, visualização, redação – preparação do original, e redação – revisão & edição; NFG: conceptualização, visualização, e redação – preparação do original; MAS: conceptualização, visualização, redação – preparação do original, e redação – revisão & edição; LGB, LKI, e LFMM: redação – preparação do original.
Trabalho desenvolvido no Departamento de Ortopedia e Traumatologia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
Publication History
Received: 08 April 2025
Accepted: 30 September 2025
Article published online:
30 December 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
Edgard Eduard Engel, Nelson Fabrício Gava, Mariana Avelino dos Santos, Leonardo Gomes Baldoino, Lucas Klarosk Ismael, Luis Felipe Miras Modolo. Atualizações em enxertos e substitutos ósseos. Rev Bras Ortop (Sao Paulo) 2025; 60: s00451814115.
DOI: 10.1055/s-0045-1814115
-
Referências
- 1 Campana V, Milano G, Pagano E. et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 2014; 25 (10) 2445-2461
- 2 De Grado GF, Keller L, Idoux-Gillet Y. et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9: 2041731418776819
- 3 Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001; 10 (Suppl 2, Suppl 2) S96-S101
- 4 Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Adv Healthc Mater 2020; 9 (23) e2000724
- 5 Wei S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable materials for bone defect repair. Mil Med Res 2020; 7 (01) 54
- 6 Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2 (04) 224-247
- 7 Williams DF. European Society for Biomaterials; Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986. Amsterdam;New York: Elsevier; ; 1987. Available from: https://catalog.nlm.nih.gov/discovery/fulldisplay/alma996473353406676/01NLM_INST:01NLM_INST
- 8 Schlickewei W, Schlickewei C. The Use of Bone Substitutes in the Treatment of Bone Defects - The Clinical View and History. Macromol Symp 2007; 253 (01) 10-23
- 9 Lu JX, Flautre B, Anselme K. et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 1999; 10 (02) 111-120
- 10 Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 1997; 121 (02) 317-324
- 11 Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B 2017; 5 (31) 6175-6192
- 12 Cimatti B, Engel EE, Nogueira-Barbosa MH, Frighetto PD, Volpon JB. Physical and mechanical characterization of a porous cement for metaphyseal bone repair. Acta Ortop Bras 2015; 23 (04) 197-201
- 13 Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113: 23-41
- 14 Cimatti B, Santos MAD, Brassesco MS. et al. Safety, osseointegration, and bone ingrowth analysis of PMMA-based porous cement on animal metaphyseal bone defect model. J Biomed Mater Res B Appl Biomater 2018; 106 (02) 649-658
- 15 Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010; 132: 15-30
- 16 Yee MA, Hundal RS, Perdue AM, Hake ME. Autologous Bone Graft Harvest Using the Reamer-Irrigator-Aspirator. J Orthop Trauma 2018; 32 (4, Suppl 1) S20-S21
- 17 Dekker TJ, Aman ZS, DePhillipo NN, Dickens JF, Anz AW, LaPrade RF. Chondral Lesions of the Knee: An Evidence-Based Approach. J Bone Joint Surg Am 2021; 103 (07) 629-645
- 18 Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021; 26 (10) 3007
- 19 Gava NF, Engel EE. Treatment alternatives and clinical outcomes of bone filling after benign tumour curettage. A systematic review. Orthop Traumatol Surg Res 2022; 108 (04) 102966
- 20 Funda G, Taschieri S, Bruno GA. et al. Nanotechnology Scaffolds for Alveolar Bone Regeneration. Materials (Basel) 2020; 13 (01) 201
- 21 Malhotra A, Habibovic P. Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends Biotechnol 2016; 34 (12) 983-992
- 22 Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 1998; 19 (16) 1473-1478
- 23 Xu HH, Wang P, Wang L. et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res 2017; 5: 17056
- 24 Välimäki VV, Aro HT. Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg 2006; 95 (02) 95-102
- 25 Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9 (01) 4457-4486
- 26 Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8: 474
- 27 Ignácio H, Mazzer N, Barbieri CH, Chierice G. Uso da poliuretana derivada do óleo de mamona para preencher defeitos ósseos diafisários segmentares do rádio: estudo experimental em coelhos. Rev Bras Ortop 1997; 32 (10) 815-821
- 28 Haboush EJ. A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Jt Dis 1953; 14 (02) 242-277
- 29 Baptista AM, Camargo AFdF, Caiero MT, Rebolledo DCS, Correia LF, Camargo OPd. GCT: What happened after 10 years of curettage and cement? Retrospective study of 46 cases. Acta Ortop Bras 2014; 22 (06) 308-311
- 30 Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a Bone Scaffold Biomaterial. J Craniofac Surg 2018; 29 (07) 1788-1793
- 31 Szalay K, Antal I, Kiss J, Szendroi M. Comparison of the degenerative changes in weight-bearing joints following cementing or grafting techniques in giant cell tumour patients: medium-term results. Int Orthop 2006; 30 (06) 505-509
- 32 Dall'Oca C, Maluta T, Cavani F. et al. The biocompatibility of porous vs non-porous bone cements: a new methodological approach. Eur J Histochem 2014; 58 (02) 2255
- 33 Arabmotlagh M, Bachmaier S, Geiger F, Rauschmann M. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model. J Biomed Mater Res B Appl Biomater 2014; 102 (08) 1613-1619
- 34 Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloys Compd 2016; 660: 461-470
- 35 Meenashisundaram GK, Wang N, Maskomani S. et al. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Mater Sci Eng C 2020; 108: 110478
- 36 Soltan M, Smiler D, Prasad HS, Rohrer MD. Bone block allograft impregnated with bone marrow aspirate. Implant Dent 2007; 16 (04) 329-339
- 37 Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008; 39 (Suppl. 02) S45-S57
- 38 Bose S, Sarkar N, Banerjee D. Natural medicine delivery from biomedical devices to treat bone disorders: A review. Acta Biomater 2021; 126: 63-91
- 39 Szpalski M, Gunzburg R. Recombinant human bone morphogenetic protein-2: a novel osteoinductive alternative to autogenous bone graft?. Acta Orthop Belg 2005; 71 (02) 133-148
- 40 Collon K, Gallo MC, Lieberman JR. Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021; 275: 120901
