RSS-Feed abonnieren

DOI: 10.1055/s-0045-1811547
Neuroanatomy of Neurogenic Shock
Funding None.

Abstract
Neurogenic shock is thus defined as autonomic failure, leading to hypotension, bradycardia, and metabolic vasodilation. The primary pathology lies in the cessation of the sympathetic outflow following the spinal or brain stem injury insult. Thus, an understanding of the neuroanatomic substrate of neurogenic shock's pathophysiology is a prerequisite for a successful approach to diagnosis and therapy. Therefore, this narrative review will comprehensively discuss the neuroanatomic structures involved in the pathology of neurogenic shock, emphasizing their functional significance in the context of the impairment consequences.
Keywords
neurogenic shock - autonomic failure - hypotension - bradycardia - sympathetic outflow - spinal cord injury - pathophysiology - autonomic nervous systemPublikationsverlauf
Artikel online veröffentlicht:
29. August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Tyroch AH, Davis JW, Kaups KL, Lorenzo M. Spinal cord injury. A preventable public burden. Arch Surg 1997; 132 (07) 778-781
- 2 Abdul Azeez MM, Moscote-Salazar LR, Alcala-Cerra G. et al. Emergency management of traumatic spinal cord injuries. Indian J Neurotrauma 2020; 17 (02) 57-61
- 3 Kwon BK, Tetreault LA, Martin AR. et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on hemodynamic management. Global Spine J 2024; 14 (3_suppl): 187S-211S
- 4 Stein DM, Knight IV WAT. Emergency neurological life support: traumatic spine injury. Neurocrit Care 2017; 27 (Suppl. 01) 170-180
- 5 Parra MW, Ordoñez CA, Mejia D. et al. Damage control approach to refractory neurogenic shock: a new proposal to a well-established algorithm. Colomb Med (Cali) 2021; 52 (02) e4164800
- 6 Dave S, Dahlstrom JJ, Weisbrod LJ. Neurogenic Shock. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2025
- 7 Moscote-Salazar LR, Janjua T, Flórez-Perdomo WA, Rukadikar C, Agrawal A. Pathophysiological mechanisms of neurogenic shock. Indian J Neurotrauma 2025; 22 (02) 122-125
- 8 Vaillancourt M, Chia P, Sarji S. et al. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res 2017; 18 (01) 201
- 9 Valenza G, Sclocco R, Duggento A. et al. The central autonomic network at rest: uncovering functional MRI correlates of time-varying autonomic outflow. Neuroimage 2019; 197: 383-390
- 10 Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 2006; 7 (05) 335-346
- 11 Wang K, Duan S, Wen X. et al. Angiotensin II system in the nucleus tractus solitarii contributes to autonomic dysreflexia in rats with spinal cord injury. PLoS One 2017; 12 (07) e0181495
- 12 Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG. Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008; 509 (04) 382-399
- 13 Strain MM, Conley NJ, Kauffman LS. et al. Dorsal motor vagal neurons can elicit bradycardia and reduce anxiety-like behavior. iScience 2024; 27 (03) 109137
- 14 Llewellyn-Smith IJ, Weaver LC. Changes in synaptic inputs to sympathetic preganglionic neurons after spinal cord injury. J Comp Neurol 2001; 435 (02) 226-240
- 15 Steinman J, Cahill LS, Stortz G, Macgowan CK, Stefanovic B, Sled JG. Non-invasive ultrasound detection of cerebrovascular changes in a mouse model of traumatic brain injury. J Neurotrauma 2020; 37 (20) 2157-2168
- 16 Michael FM, Patel SP, Rabchevsky AG. Intraspinal plasticity associated with the development of autonomic dysreflexia after complete spinal cord injury. Front Cell Neurosci 2019; 13: 505
- 17 McLachlan EM. Diversity of sympathetic vasoconstrictor pathways and their plasticity after spinal cord injury. Clin Auton Res 2007; 17 (01) 6-12
- 18 Pastrana EA, Saavedra FM, Murray G, Estronza S, Rolston JD, Rodriguez-Vega G. Acute adrenal insufficiency in cervical spinal cord injury. World Neurosurg 2012; 77 (3–4): 561-563
- 19 Grensemann J. Cardiac output monitoring by pulse contour analysis, the technical basics of less-invasive techniques. Front Med (Lausanne) 2018; 5: 64
- 20 McLean AS. Echocardiography in shock management. Crit Care 2016; 20 (01) 275
- 21 Taman M, Abdulrazeq H, Chuck C. et al. Vasopressor use in acute spinal cord injury: current evidence and clinical implications. J Clin Med 2025; 14 (03) 902
- 22 Burzyńska M, Woźniak J, Urbański P, Kędziora J, Załuski R, Goździk W, Uryga A. Heart rate variability and cerebral autoregulation in patients with traumatic brain injury with paroxysmal sympathetic hyperactivity syndrome. Neurocrit Care 2025; 42 (03) 864-877
- 23 Biaggioni I, Whetsell WO, Jobe J, Nadeau JH. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii. Hypertension 1994; 23 (04) 491-495
- 24 Cheranakhorn C, Teeratpatcharakun T. Accuracy of SOFA score to predict outcome in community-acquired sepsis. J Med Assoc Thai 2021; 104 (04) 544-551
- 25 Moscote-Salazar LR, Janjua T, Agrawal A. The clinical rules for the management of neurogenic shock. Indian J Neurotrauma 2025; (e-pub ahead of print).
- 26 Brennan FH, Swarts EA, Kigerl KA. et al. Microglia promote maladaptive plasticity in autonomic circuitry after spinal cord injury in mice. Sci Transl Med 2024; 16 (751) eadi3259