Subscribe to RSS

DOI: 10.1055/s-0045-1809962
Comparative Efficacy of TOF MRA and CT Angiography in Cerebrovascular Disease Diagnostics
Eficácia comparativa da TOF MRA e da angiografia por tomografia computadorizada no diagnóstico de doenças cerebrovascularesAuthors
Funding The author(s) received no financial support for the research.
Abstract
Objective
To compare the diagnostic value of 3D Time-of-Flight Magnetic Resonance Angiography (3D TOF MRA) with Computed Tomography Angiography (CTA) in assessing cerebrovascular disease (CVD).
Methods
A retrospective observational study included 205 adult patients who underwent both TOF MRA and CTA scans. Demographic data, clinical symptoms, and imaging findings were analyzed. Diagnostic parameters were calculated for TOF MRA using CTA as the reference standard.
Results
Among 205 patients (mean age: 60 ± 11.67 years), TOF MRA detected more vessel occlusions (45.9%) than CTA (39%). CTA, however, identified more aneurysms (2.9% versus 1.5%). TOF MRA showed a sensitivity of 88%, specificity of 76%, and overall diagnostic efficacy of 84%. A significant association between CVD changes detected by MRA and CTA was observed (p < 0.001).
Conclusions
TOF MRA demonstrated a higher detection rate for vessel occlusions but was less effective than CTA in detecting vessel stenosis and aneurysms. TOF MRA is safer for repeated use and in patients with renal insufficiency due to the absence of contrast agents and ionizing radiation. However, its lower spatial resolution may lead to misclassification.
Resumo
Objetivo
Comparar o valor diagnóstico da Angiografia por Ressonância Magnética com Técnica de Tempo de Voo 3D (3D TOF MRA) com a Angiografia por Tomografia Computadorizada (CTA) na avaliação de doenças cerebrovasculares (DCV).
Métodos
Um estudo observacional retrospectivo incluiu 205 pacientes adultos que realizaram exames de TOF MRA e CTA. Dados demográficos, sintomas clínicos e achados de imagem foram analisados. Os parâmetros diagnósticos foram calculados para TOF MRA usando CTA como padrão de referência.
Resultados
Entre os 205 pacientes (idade média: 60 ± 11,67 anos), a TOF MRA detectou mais oclusões vasculares (45,9%) do que a CTA (39%). No entanto, a CTA identificou mais aneurismas (2,9% contra 1,5%). A TOF MRA apresentou uma sensibilidade de 88%, especificidade de 76% e eficácia diagnóstica global de 84%. Observou-se uma associação significativa entre as alterações de DCV detectadas pela MRA e pela CTA (p < 0,001).
Conclusões
A TOF MRA demonstrou uma taxa de detecção superior para oclusões vasculares, mas foi menos eficaz que a CTA na detecção de estenoses vasculares e aneurismas. A TOF MRA é mais segura para uso repetido e para pacientes com insuficiência renal, devido à ausência de agentes de contraste e radiação ionizante. No entanto, sua menor resolução espacial pode levar a erros de classificação.
Authors' Contributions
FK, FST, BA, NS, ZBK, LJ, AF: material preparation, data collection, and data analysis; AF, NS: writing — original draft. All authors contributed to the conception and design of the study, critical review of the manuscript, and final approval.
Publication History
Received: 29 October 2024
Accepted: 22 May 2025
Article published online:
08 October 2025
© 2025. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
-
References
- 1 Nawata K. An analysis of risk factors affecting cerebrovascular disease. Health (London) 2022; 14 (08) 866-882
- 2 Lee CH, Lee SH. General facts of stroke. Stroke Revisited: Pathophysiology of Stroke: From Bench to Bedside. 2020:3–10
- 3 World Health Organization. (2020) The Top 10 Causes of Death. [Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- 4 Lansberg MG, Wintermark M, Kidwell CS, Albers GW. 48 - Magnetic Resonance Imaging of Cerebrovascular Diseases. In: Grotta JC, Albers GW, Broderick JP, Day AL, Kasner SE, Lo EH. et al., editors. Stroke (Seventh Edition). Philadelphia: Elsevier; 2022: 676-98.e10
- 5 Wang G, Wang P, Li Y, Su T, Liu X, Wang H. A motion artifact reduction method in cerebrovascular DSA sequence images. Int J Pattern Recognit Artif Intell 2018; 32 (08) 1854022
- 6 Usman FS, Sani AF, Husain S. Safety of cerebral digital subtraction angiography: complication rate analysis. Univ Med 2012; 31 (01) 27-33
- 7 Grossberg JA, Howard BM, Saindane AM. The use of contrast-enhanced, time-resolved magnetic resonance angiography in cerebrovascular pathology. Neurosurg Focus 2019; 47 (06) E3
- 8 Optimizing the Use of Iodinated Contrast Media for CT: Managing Shortages and Planning for a Sustainable and Secure Supply. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health; 2023
- 9 Kinoshita T, Ogawa T, Kado H, Sasaki N, Okudera T. CT angiography in the evaluation of intracranial occlusive disease with collateral circulation: comparison with MR angiography. Clin Imaging 2005; 29 (05) 303-306
- 10 Ucar FA, Frenzel M, Abello Mercado MA. et al. Feasibility of ultra-high resolution supra-aortic CT angiography: an assessment of diagnostic image quality and radiation dose. Tomography 2021; 7 (04) 711-720
- 11 Almojadah T, Alnowimi M, Banoqitah E, Alkhateeb SM. Digital radiography retake rates and effect on patient dose. Radiat Phys Chem 2023; 210: 110991
- 12 Bos D, Guberina N, Zensen S, Opitz M, Forsting M, Wetter A. Radiation exposure in computed tomography. Dtsch Arztebl Int 2023; 120 (09) 135-141
- 13 Weisbord SD, Gallagher M. Iodinated Contrast and Acute Kidney Injury. Evid Based Nephrol 2022; 1: 145-162
- 14 Niu J, Ran Y, Chen R. et al. Use of PETRA-MRA to assess intracranial arterial stenosis: Comparison with TOF-MRA, CTA, and DSA. Front Neurol 2023; 13: 1068132
- 15 Xiang S, Fan F, Hu P. et al. The sensitivity and specificity of TOF-MRA compared with DSA in the follow-up of treated intracranial aneurysms. J Neurointerv Surg 2021; 13 (12) 1172-1179
- 16 Manso-Díaz G, García-Real MI, Casteleyn C, San-Román F, Taeymans O. Time-of-flight magnetic resonance angiography (TOF-MRA) of the normal equine head. Equine Vet J 2013; 45 (02) 187-192
- 17 Park HY, Suh CH, Shim WH. et al. Diagnostic yield of TOF-MRA for detecting incidental vascular lesions in patients with cognitive impairment: An observational cohort study. Front Neurol 2022; 13: 958037
- 18 Dündar TT, Aralaşmak A, Özdemir H. et al. Comparison of TOF MRA, contrast-enhanced MRA and subtracted CTA from CTP in residue evaluation of treated intracranial aneurysms. Turk Neurosurg 2017; 28: 563-570
- 19 Schiebler ML, Benson D, Schubert T, Francois CJ. Noncontrast and contrast-enhanced pulmonary magnetic resonance angiography. MRI Lung 2018
- 20 Calloni SF, Perrotta M, Roveri L. et al. The role of CE-MRA of the supraortic vessels in the detection of associated intracranial pathology. Neurol Sci 2021; 42 (12) 5131-5137
- 21 Kwak Y, Son W, Kim Y-S, Park J, Kang D-H. Discrepancy between MRA and DSA in identifying the shape of small intracranial aneurysms. J Neurosurg 2020; 134 (06) 1887-1893
- 22 Aracki TA, Stojanov D, Ristić S. et al. Diagnostic accuracy of magnetic resonance angiography for unruptured cerebral aneurysms in correlation with digital subtraction angiography. Acta Medica Med 2015; 54 (03) 12-18
- 23 Raberin A, Martin C, Celle S. et al. Sex-related differences in endothelial function and blood viscosity in the elderly population. Front Physiol 2023; 14: 1151088
- 24 Lee S, Choi E, Ahn H. et al. Systolic, diastolic blood pressure and pulse pressure and risk of stroke in young aged patients with atrial fibrillation. Europace 2023; 25 (01) 45
- 25 Mullen MT, Cucchiara BL, Messé SR, Zamzam A, Kasner SE. Randomized Trial of a Social Support Intervention to Improve Home Blood Pressure Monitoring in Patients With Cerebrovascular Disease. Neurologist 2023; 28 (06) 402-408
- 26 Fan H, Hao X, Yang S. et al. Study on the incidence and risk factor of silent cerebrovascular disease in young adults with first-ever stroke. Medicine (Baltimore) 2018; 97 (48) e13311
- 27 Korogi Y, Takahashi M, Nakagawa T. et al. Intracranial vascular stenosis and occlusion: MR angiographic findings. AJNR Am J Neuroradiol 1997; 18 (01) 135-143
- 28 Lell M, Fellner C, Baum U. et al. Evaluation of carotid artery stenosis with multisection CT and MR imaging: influence of imaging modality and postprocessing. AJNR Am J Neuroradiol 2007; 28 (01) 104-110
- 29 Numminen J, Tarkiainen A, Niemelä M, Porras M, Hernesniemi J, Kangasniemi M. Detection of unruptured cerebral artery aneurysms by MRA at 3.0 tesla: comparison with multislice helical computed tomographic angiography. Acta Radiol 2011; 52 (06) 670-674
- 30 Dakshit D, Chakraborty P. Diagnostic accuracy of three dimentional digital substraction angiography (3d DSA) in correlation with computed tomographic angiography (CTA) and magnetic resonance angiography (MRA) in evaluation of aneurysmal subarachnoid haemorrhage: a comparative study in a tertiary care hospital. PJR 2018;28(4)
- 31 Nael K, Villablanca JP, Mossaz L. et al. 3-T contrast-enhanced MR angiography in evaluation of suspected intracranial aneurysm: comparison with MDCT angiography. AJR Am J Roentgenol 2008; 190 (02) 389-395
- 32 Levent A, Yuce I, Eren S, Ozyigit O, Kantarci M. Contrast-enhanced and time-of-flight MR angiographic assessment of endovascular coiled intracranial aneurysms at 1.5 T. Interv Neuroradiol 2014; 20 (06) 686-692
- 33 Wang X, Benson JC, Jagadeesan B, McKinney A. Giant cerebral aneurysms: comparing CTA, MRA, and digital subtraction angiography assessments. J Neuroimaging 2020; 30 (03) 335-341

