Subscribe to RSS

DOI: 10.1055/s-0045-1809641
Very Delayed Brain Metastasis from a Clear Cell Renal Cell Carcinoma: Report of Two Cases and a Literature Review
Metástase cerebral muito tardia de um carcinoma de células renais claras: Relato de dois casos e revisão da literaturaAuthors
Funding The authors declare that they did not receive funding from agencies in the public, private or non-profit sectors to conduct the present study.

Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent primary kidney cancer. Although its relevant capability to disseminate, long-term brain metastasis is very unusual. The present paper describes two cases of delayed brain metastasis: one occipital that occurred 20 years after a radical nephrectomy, and one thalamic after 11 years. An extensive literature review was also carried out, and only 31 cases of delayed brain metastasis from ccRCC were found. The authors provide an analysis of all 33 cases, focusing on clinical, radiological, and histological features, along with current treatment recommendations.
Resumo
O carcinoma de células renais claras (ccRCC) é o câncer renal primário mais prevalente. Embora tenha uma capacidade relevante de disseminação, a metástase cerebral de longo prazo é muito incomum. O presente artigo descreve dois casos de metástase cerebral tardia: uma occipital, ocorrida 20 anos após uma nefrectomia radical, e uma talâmica após 11 anos. Uma extensa revisão da literatura também foi realizada, e apenas 31 casos de metástase cerebral tardia de ccRCC foram encontrados. Os autores fornecem uma análise de todos os 33 casos, com foco em características clínicas, radiológicas e histológicas, além das recomendações de tratamento atuais.
Palavras-chave
doenças de início tardio - carcinoma de células renais - relato de caso - metástase cerebralAuthor's Contributions
GFSQ: data extraction, data synthesis, and writing — original draft; BF: ensured coherence and clarity of the manuscript. All authors contributed to the review of the text and approved the final version of the manuscript.
Publication History
Received: 08 October 2024
Accepted: 20 March 2025
Article published online:
08 October 2025
© 2025. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
-
References
- 1 Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncol 2020; 22 (12, Suppl 2) iv1-iv96
- 2 Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897) 1807-1812
- 3 Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10) 997-1003
- 4 Louis D, Ohgaki H, Wiestler O. WHO Classification of Tumours of the Central Nervous Sytem. Lyon: WHO; 2016
- 5 Appin CL, Brat DJ. Molecular genetics of gliomas. Cancer J 2014; 20 (01) 66-72
- 6 Nandakumar P, Mansouri A, Das S. The role of ATRX in glioma biology. Front Oncol 2017; 7 (01) 236
- 7 Cruz-Hernández TM, Piloto-López O, Escuela-Martín J, Ardisana-Santana E. Concomitant radio-fluorescence-guided surgery in high grade glioma. Cohort study. Rev Chil Neurocir 2018; 44 (01) 128-135 Available from: https://www.revistachilenadeneurocirugia.com/index.php/revchilneurocirugia/article/view/23
- 8 Rostomily RC, Born DE, Beyer RP, Jin J, Alvord Jr EC, Mikheev AM. et al. Quantitative proteomic analysis of oligodendrogliomas with and without 1p/19q deletion. J Proteome Res 2010; 9 (05) 2610-2618
- 9 Krafft C, Sobottka SB, Schackert G, Salzer R. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 2005; 130 (07) 1070-1077
- 10 Vilela Filho O, Carneiro Filho O. Gamma probe-assisted brain tumor microsurgical resection: a new technique. Arq Neuropsiquiatr 2002; 60 (04) 1042-1047
- 11 Galli R, Meinhardt M, Koch E, Schackert G, Steiner G, Kirsch M, Uckermann O. Rapid label-free analysis of brain tumor biopsies by near infrared Raman and fluorescence spectroscopy—a study of 209 patients. Front Oncol 2019; 9 (01) 1165
- 12 Ak I, Gülbas Z, Altinel F, Vardareli E. Tc-99m MIBI uptake and its relation to the proliferative potential of brain tumors. Clin Nucl Med 2003; 28 (01) 29-33
- 13 Jermyn M, Desroches J, Mercier J, Tremblay MA, St-Arnaud K, Guiot MC. et al. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts. J Biomed Opt 2016; 21 (09) 94002
- 14 Casara D, Rubello D, Piotto A, Pelizzo MR. 99mTc-MIBI radio-guided minimally invasive parathyroid surgery planned on the basis of a preoperative combined 99mTc-pertechnetate/99mTc-MIBI and ultrasound imaging protocol. Eur J Nucl Med 2000; 27 (09) 1300-1304
- 15 Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95 (02) 190-198
- 16 Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol 2014; 32 (08) 774-782
- 17 Krafft C, Shapoval L, Sobottka SB, Geiger KD, Schackert G, Salzer R. Identification of primary tumors of brain metastases by SIMCA classification of IR spectroscopic images. Biochim Biophys Acta 2006; 1758 (07) 883-891
- 18 Alexiou GA, Fotopoulos AD, Papadopoulos A, Kyritsis AP, Polyzoidis KS, Tsiouris S. Evaluation of brain tumor recurrence by (99m)Tc-tetrofosmin SPECT: a prospective pilot study. Ann Nucl Med 2007; 21 (05) 293-298
- 19 Alex JC, Krag DN. The gamma-probe-guided resection of radiolabeled primary lymph nodes. Surg Oncol Clin N Am 1996; 5 (01) 33-41
- 20 Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 2015; 7 (274) 274ra19
- 21 Livermore LJ, Isabelle M, Bell IM, Edgar O, Voets NL, Stacey R. et al. Raman spectroscopy to differentiate between fresh tissue samples of glioma and normal brain: a comparison with 5-ALA-induced fluorescence-guided surgery. J Neurosurg 2020; 135 (02) 469-479
- 22 Stupp R, Mason WP, Van den Bent MJ, Weller M, Fisher B, Taphoorn MJB. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
- 23 Van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MCM, Delattre JY. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31 (03) 344-350
- 24 Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A. et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 2014; 74 (03) 310-319 , discussion 319–320
- 25 Muragaki Y, Iseki H, Maruyama T, Kawamata T, Yamane F, Nakamura R. et al. Usefulness of intraoperative magnetic resonance imaging for glioma surgery. Acta Neurochir Suppl (Wien) 2006; 98 (01) 67-75
- 26 Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II. et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 2012; 5 (01) 89-102
- 27 Riva M, Sciortino T, Secoli R, D'Amico E, Moccia S, Fernandes B. et al. Glioma biopsies classification using Raman spectroscopy and machine learning models on fresh tissue samples. Cancers (Basel) 2021; 13 (05) 1073
- 28 Aguiar RP, Silveira Jr L, Falcão ET, Pacheco MT, Zângaro RA, Pasqualucci CA. Discriminating neoplastic and normal brain tissues in vitro through Raman spectroscopy: a principal components analysis classification model. Photomed Laser Surg 2013; 31 (12) 595-604
- 29 Anna I, Bartosz P, Lech P, Halina A. Novel strategies of Raman imaging for brain tumor research. Oncotarget 2017; 8 (49) 85290-85310
- 30 Auner AW, Kast RE, Rabah R, Poulik JM, Klein MD. Conclusions and data analysis: a 6-year study of Raman spectroscopy of solid tumors at a major pediatric institute. Pediatr Surg Int 2013; 29 (02) 129-140
- 31 Beleites C, Geiger K, Kirsch M, Sobottka SB, Schackert G, Salzer R. Raman spectroscopic grading of astrocytoma tissues: using soft reference information. Anal Bioanal Chem 2011; 400 (09) 2801-2816
- 32 Kalkanis SN, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM. et al. Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 2014; 116 (03) 477-485
- 33 Kast R, Auner G, Yurgelevic S, Broadbent B, Raghunathan A, Poisson LM. et al. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging. J Neurooncol 2015; 125 (02) 287-295
- 34 Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D. et al. Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 1998; 25 (12) 1649-1657
- 35 Lemoine É, Dallaire F, Yadav R, Agarwal R, Kadoury S, Trudel D. et al. Feature engineering applied to intraoperative in vivo Raman spectroscopy sheds light on molecular processes in brain cancer: a retrospective study of 65 patients. Analyst 2019; 144 (22) 6517-6532
- 36 Brat DJ, Verhaak RG, Aldape KD, Yung WKA, Salama SR, Cooper LAD. et al; Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015; 372 (26) 2481-2498
- 37 Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 2012; 33 (5-6): 579-589
- 38 Zhou Y, Liu CH, Sun Y, Pu Y, Boydston-White S, Liu Y, Alfano RR. Human brain cancer studied by resonance Raman spectroscopy. J Biomed Opt 2012; 17 (11) 116021-116021