RSS-Feed abonnieren

DOI: 10.1055/s-0045-1809513
A aplicação tópica de nanocápsulas de estrogênio na incisão cutânea melhora a Consolidação de fraturas em ratas osteoporóticas
Topical Application of Estrogen Nanocapsules on Skin Incision Improves Fracture Healing in Osteoporotic Rats
Resumo
Objetivo O desafio de consolidação de fraturas osteoporóticas, particularmente exacerbadas pela deficiência de estrogênio pós-menopausa, ressalta a necessidade urgente de intervenções eficazes. Este estudo tem como objetivo avaliar o impacto do estrogênio administrado localmente via nanocápsulas na consolidação de fraturas osteoporóticas em ratas ovariectomizadas e analisar os efeitos sistêmicos deste hormônio usando o útero como órgão sentinela.
Métodos Quarenta e cinco animais foram submetidos a fraturas femorais padronizadas e divididos em três grupos: G1 (controle), G2 (estrogênio convencional) e G3 (nanocápsulas de estrogênio). O estrogênio foi aplicado topicamente na região da incisão da pele (área tricotomizada). A cicatrização da fratura foi avaliada 15 e 30 dias após a fratura por meio de análises radiográficas e histológicas. A histologia uterina analisou os efeitos sistêmicos.
Resultados Na análise radiográfica dos calos ósseos, G3 (8,75 ± 0,77 mm) exibiu formação de calo significativamente maior do que o grupo controle (7,18 ± 0,4 mm) no dia 15 e a análise histológica revelou aumento da formação de calo em G3 no dia 30, indicando um processo de cicatrização acelerado. Além disso, a análise histológica uterina no dia 30 mostrou uma redução na espessura endometrial em G3 (510.073 ± 54.705,11 μm) em comparação a G2 (623.729 ± 101.592 μm).
Conclusão Estes achados sugerem que nanocápsulas tópicas de estrogênio podem aumentar a formação de calos no tratamento de fraturas femorais osteoporóticas em ratas, potencialmente com menos efeitos sistêmicos.
Abstract
Objective The challenge of consolidating osteoporotic fractures, particularly exacerbated by postmenopausal estrogen deficiency, underscores the urgent need for effective interventions. This study aims to evaluate the impact of locally administered estrogen via nanocapsules on the consolidation of osteoporotic fractures in ovariectomized rats, while also assessing the systemic effects of this hormone, using the uterus as a sentinel organ.
Methods Forty-five animals underwent standardized femoral fractures and were divided into three groups: G1 (control), G2 (conventional estrogen), and G3 (estrogen nanocapsules). The estrogen was applied topically to the skin incision region (trichotomized area). Fracture healing was assessed at 15- and 30-days postfracture through radiographic and histological analyses, with uterine histology conducted to evaluate systemic effects.
Results In terms of radiographic analysis of callus formation, G3 (8.75 ± 0.77 mm) exhibited significantly higher callus formation than the control group (7.18 ± 0.4 mm) at day 15, with histological analysis revealing increased callus formation in G3 at day 30, indicating an accelerated healing process. Furthermore, uterine histological analysis at day 30 showed a reduction in endometrial thickness in G3 (510,073 ± 54,705.11 μm) compared with G2 (623,729 ± 101,592 μm).
Conclusion These findings suggest that topical estrogen nanocapsules may enhance callus formation in the treatment of osteoporotic femoral fractures in rats, potentially with fewer systemic effects.
Suporte Financeiro
Os autores declaram que não receberam suporte financeiro de agências dos setores público, privado ou sem fins lucrativos para a realização deste estudo.
Trabalho desenvolvido no Departamento de Medicina, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil.
Publikationsverlauf
Eingereicht: 09. Juli 2024
Angenommen: 02. Oktober 2024
Artikel online veröffentlicht:
14. Juni 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Dalton Berri, Elcio Machinski, Conrado Auer Trentini, Paulo Vitor Farago, Adriana Yuriko Koga, Leandro Cavalcante Lipinski. A aplicação tópica de nanocápsulas de estrogênio na incisão cutânea melhora a Consolidação de fraturas em ratas osteoporóticas. Rev Bras Ortop (Sao Paulo) 2025; 60: s00451809513.
DOI: 10.1055/s-0045-1809513
-
Referências
- 1 Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull 2020; 133 (01) 105-117
- 2 Hungria Neto JS, Dias CR, de Almeida JDB. Características epidemiológicas e causas da fratura do terço proximal do fêmur em idosos. Rev Bras Ortop 2011; 46 (06) 660-667
- 3 Salari N, Ghasemi H, Mohammadi L. et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021; 16 (01) 609
- 4 Lill CA, Hesseln J, Schlegel U, Eckhardt C, Goldhahn J, Schneider E. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res 2003; 21 (05) 836-842
- 5 Matzkin EG, DeMaio M, Charles JF, Franklin CC. Diagnosis and Treatment of Osteoporosis: What Orthopaedic Surgeons Need to Know. J Am Acad Orthop Surg 2019; 27 (20) e902-e912
- 6 Beil FT, Barvencik F, Gebauer M. et al. Effects of increased bone formation on fracture healing in mice. J Trauma 2011; 70 (04) 857-862
- 7 Beil FT, Barvencik F, Gebauer M. et al. Effects of estrogen on fracture healing in mice. J Trauma 2010; 69 (05) 1259-1265
- 8 McNamara LM. Osteocytes and Estrogen Deficiency. Curr Osteoporos Rep 2021; 19 (06) 592-603
- 9 Grumbach MM. Estrogen, bone, growth and sex: a sea change in conventional wisdom. J Pediatr Endocrinol Metab 2000; 13 (Suppl. 06) 1439-1455
- 10 Santoro N, Roeca C, Peters BA, Neal-Perry G. The Menopause Transition: Signs, Symptoms, and Management Options. J Clin Endocrinol Metab 2021; 106 (01) 1-15
- 11 Einhorn TA. The science of fracture healing. J Orthop Trauma 2005; 19 (10, Suppl) S4-S6
- 12 Tahami M, Haddad B, Abtahian A, Hashemi A, Aminian A, Konan S. Potential Role of Local Estrogen in Enhancement of Fracture Healing: Preclinical Study in Rabbits. Arch Bone Jt Surg 2016; 4 (04) 323-329
- 13 Namkung-Matthai H, Appleyard R, Jansen J. et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 2001; 28 (01) 80-86
- 14 Amadei SU, Silveira VÁS, Pereira AC, Carvalho YR, da Rocha RF. A influência da deficiência estrogênica no processo de remodelação e reparação óssea. J Bras Patol Med Lab 2006; 42 (01) 5-12
- 15 Rani J, Swati S, Meeta M, Singh SH, Tanvir T, Madan A. Postmenopausal Osteoporosis: Menopause Hormone Therapy and Selective Estrogen Receptor Modulators. Indian J Orthop 2023; 57 (Suppl. 01) 105-114
- 16 Goldštajn MŠ, Mikuš M, Ferrari FA. et al. Effects of transdermal versus oral hormone replacement therapy in postmenopause: a systematic review. Arch Gynecol Obstet 2023; 307 (06) 1727-1745
- 17 Vogel EM, Bronoski M, Marques LLM, Cardoso FAR. Challenges of nanotechnology in cosmetic permeation with caffeine. Braz J Biol 2021; 82: e241025
- 18 Wang X, Meng F, Lei Z, Fan D, Lou B. Editorial: Bone targeting nanoparticle drug delivery system in bone metabolism and bone-related tumor diseases. Front Pharmacol 2022; 13: 1016631
- 19 Chenthamara D, Subramaniam S, Ramakrishnan SG. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23: 20
- 20 Leon L, Chung EJ, Rinaldi C. A brief History of Nanotechnology and Introduction to Nanoparticles for biomedical Applications. In: Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Amsterdam, Netherlands: Elsevier; 2020: 1-4
- 21 Sethuraman V, Ramesh A, Janakiraman K, Balakrishnan N. Nanodispersions for drug delivery applications: a special focus toward cancer therapeutics. J Nanopart Res 2024; 26: 116
- 22 Huo MH, Troiano NW, Pelker RR, Gundberg CM, Friedlaender GE. The influence of ibuprofen on fracture repair: biomechanical, biochemical, histologic, and histomorphometric parameters in rats. J Orthop Res 1991; 9 (03) 383-390
- 23 Cheng CH, Chen LR, Chen KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci 2022; 23 (03) 1376
- 24 Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023; 14: 1222129
- 25 Rodd C, Jourdain N, Alini M. Action of estradiol on epiphyseal growth plate chondrocytes. Calcif Tissue Int 2004; 75 (03) 214-224
- 26 Richmond RS, Carlson CS, Register TC, Shanker G, Loeser RF. Functional estrogen receptors in adult articular cartilage: estrogen replacement therapy increases chondrocyte synthesis of proteoglycans and insulin-like growth factor binding protein 2. Arthritis Rheum 2000; 43 (09) 2081-2090
- 27 Salimi F, Mohammadipanah F. Nanomaterials Versus The Microbial Compounds With Wound Healing Property. Front Nanotechnol 2021; 2 : Available from https://www.frontiersin.org/journals/nanotechnology/articles/10.3389/fnano.2020.584489/full
- 28 Ahmadi A, Mazloomnejad R, Kasravi M. et al. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13 (01) 518
- 29 Kaur R, Ajitha M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur J Pharm Sci 2019; 136: 104956
- 30 Silva LA, Ferraz Carbonel AA, de Moraes ARB. et al. Collagen concentration on the facial skin of postmenopausal women after topical treatment with estradiol and genistein: a randomized double-blind controlled trial. Gynecol Endocrinol 2017; 33 (11) 845-848