Subscribe to RSS

DOI: 10.1055/s-0045-1809337
Analysis of Microbiological Findings on the Surface of External Fixator Pins Comparing Steel Pins with Hydroxyapatite-Coated Pins
Análise dos achados microbiológicos identificados na superfície dos pinos de fixadores externos comparando pinos de aço com pinos revestidos por hidroxiapatitaFinancial Support The authors declare that they did not receive financial support from agencies in the public, private, or non-profit sectors to conduct the present study.

Abstract
Objective
To compare the microbial retrieval rates and the organism types on the surface of stainless-steel pins (SSPs) and hydroxyapatite-coated pins (HCPs) from external fixators (EFs).
Methods
The present prospective, non-randomized, multicenter, comparative interventional cohort study occurred from April 2018 to October 2021. The sample consisted of 44 patients with EFs, including 33 with SSPs and 11 with HCPs. We collected two pins from each patient, the one with the best and the one with the worst clinical appearance according to the Maz-Oxford-Nuffield (MON) classification, in an aseptic manner, and sent them for microbiological analysis.
Results
The overall superficial infection (SI) rate was 52.3% (23 of 44 patients), affecting 45.5% (5 of 11) patients with HCPs and 54.5% (18 of 33) patients with SSPs (p = 0.732). Of the 88 pins, 43.2% (38 of 88 pins) yielded microbial identification, with 42 pathogens isolated. Staphylococcus aureus was the most frequent organism, accounting for 59.5% (25 of 42 pathogens) of the positive samples. In the best-looking pins, the microbial retrieval rate was significantly lower in HCPs than SSPs, with 18.2% (2 pathogens in 11 pins) and 45.5% (15 pathogens in 33 pins), respectively (p = 0.036). In the worst-looking pins, the microbial retrieval rate in HCPs and SSPs was 27.3% (3 pathogens in 11 pins) and 54.5% (18 pathogens in 33 pins), respectively (p = 0.036).
Conclusion
Microbial retrieval rates were lower in HCPs than in SSPs. However, these differences did not impact clinical infection rates, which were similar in both groups.
Resumo
Objetivo
Comparar as taxas de recuperação microbiana e os tipos de microrganismos identificados na superfície dos pinos de aço inoxidável (PAIs) e nos pinos revestidos com hidroxiapatita (PHAs) de fixadores externos (FEs).
Métodos
Este estudo de coorte prospectiva de intervenção, não randomizado, multicêntrico, comparativo foi realizado entre abril de 2018 e outubro de 2021, com 44 pacientes tratados com FE, 33 dos quais receberam PAIs e 11 receberam PHAs. Foram coletados e enviados para análise microbiológica dois pinos de cada paciente, o de melhor e o de pior aspecto clínico conforme a classificação de Maz-Oxford-Nuffield (MON), de forma asséptica.
Resultados
A taxa de infecção (TI) superficial global foi de 52,3% (23 de 44 pacientes), sendo 45,5% (5 de 11 pacientes) entre pacientes que receberam PHAs e 54,5% (18 de 33 pacientes) entre pacientes que receberam PAI, respectivamente (p = 0,732). Dos 88 pinos, 43,2% (38 de 88 pinos) apresentaram identificação microbiana, sendo isolados 42 patógenos no total. O Staphylococcus aureus foi o mais frequente, representando 59,5% (25 dos 42 patógenos). Nas amostras de “melhor aspecto,” a taxa de recuperação microbiana foi significativamente menor nos PHAs do que nos PAIs, 18,2% (2 patógenos em 11 pinos) e 45,5% (15 patógenos em 33 pinos), respectivamente (p = 0,036). Nas amostras de “pior aspecto,” a taxa de recuperação microbiana nos PHAs e nos PAIs foi 27,3% (3 patógenos em 11 pinos) e 54,5% (18 patógenos em 33 pinos), respectivamente (p = 0,036).
Conclusão
As taxas de recuperação microbiana foram menores nos PHA comparadas às dos PAI. Entretanto, estas diferenças não impactaram nas taxas de infecção clínica, que foram semelhantes nos dois grupos.
Palavras-chave
fios ortopédicos - fixadores externos - hidroxiapatita - infecções - pinos ortopédicosWork carried out at the Instituto de Ortopedia e Traumatologia, Hospital São Vicente de Paulo, Passo Fundo, RS, Brazil.
Publication History
Received: 17 August 2024
Accepted: 07 March 2025
Article published online:
23 June 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
Cristhopher Stoffel, Honório Octávio Cuadro Peixoto, Felipe Kowaleski dos Santos, Pedro Afonso Keller Licks, Fernando Baldy dos Reis, Mauro José Costa Salles. Analysis of Microbiological Findings on the Surface of External Fixator Pins Comparing Steel Pins with Hydroxyapatite-Coated Pins. Rev Bras Ortop (Sao Paulo) 2025; 60: s00451809337.
DOI: 10.1055/s-0045-1809337
-
References
- 1 Sisk TD. General principles and techniques of external skeletal fixation. Clin Orthop Relat Res 1983; (180) 96-100
- 2 Bliven EK, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: Biomechanical perspective and recent innovations. Injury 2019; 50 (Suppl. 01) S10-S17
- 3 Huiskes R, Chao EY, Crippen TE. Parametric analyses of pin-bone stresses in external fracture fixation devices. J Orthop Res 1985; 3 (03) 341-349
- 4 Jennison T, McNally M, Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater 2014; 10 (02) 595-603
- 5 Checketts RG, MacEachern AG, Otterburn M. Pin track infection and the principles of pin site care. In: De Bastiani G, Apley AG, Anthony G. editors. Orthofix External Fixation in Trauma and Orthopaedics. London: Springer-Verlag; 2000: 97-103
- 6 Ceroni D, Grumetz C, Desvachez O, Pusateri S, Dunand P, Samara E. From prevention of pin-tract infection to treatment of osteomyelitis during paediatric external fixation. J Child Orthop 2016; 10 (06) 605-612
- 7 Parameswaran AD, Roberts CS, Seligson D, Voor M. Pin tract infection with contemporary external fixation: how much of a problem?. J Orthop Trauma 2003; 17 (07) 503-507
- 8 Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS 2017; 125 (04) 353-364
- 9 Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS 2017; 125 (04) 304-319
- 10 W-Dahl A, Toksvig-Larsen S, Lindstrand A. No difference between daily and weekly pin site care. Acta Orthop Scand 2003; 74 (06) 704-708
- 11 Pizà G, Caja VL, González-Viejo MA, Navarro A. Hydroxyapatite-coated external-fixation pins. The effect on pin loosening and pin-track infection in leg lengthening for short stature. J Bone Joint Surg Br 2004; 86 (06) 892-897
- 12 Parra-Ruiz J, Bravo-Molina A, Peña-Monje A, Hernández-Quero J. Activity of linezolid and high-dose daptomycin, alone or in combination, in an in vitro model of Staphylococcus aureus biofilm. J Antimicrob Chemother 2012; 67 (11) 2682-2685
- 13 Cirioni O, Ghiselli R, Silvestri C, Minardi D, Gabrielli E, Orlando F. et al. Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J Antimicrob Chemother 2011; 66 (06) 1318-1323
- 14 Stoffel C, Eltz B, Salles MJ. Role of coatings and materials of external fixation pins on the rates of pin tract infection: A systematic review and meta-analysis. World J Orthop 2021; 12 (11) 920-930
- 15 Saithna A. The influence of hydroxyapatite coating of external fixator pins on pin loosening and pin track infection: a systematic review. Injury 2010; 41 (02) 128-132
- 16 Davies R, Holt N, Nayagam S. The care of pin sites with external fixation. J Bone Joint Surg Br 2005; 87 (05) 716-719
- 17 Britten S, Ghoz A, Duffield B, Giannoudis PV. Ilizarov fixator pin site care: the role of crusts in the prevention of infection. Injury 2013; 44 (10) 1275-1278
- 18 Stoffel C, de Lima E, Salles MJ. Hydroxyapatite-coated compared with stainless steel external fixation pins did not show impact in the rate of pin track infection: a multicenter prospective study. Int Orthop 2023; 47 (05) 1163-1169
- 19 Stoffel CL. Complicações infecciosas no trajeto dos pinos de fixadores externos com e sem revestimento por hidroxiapatita – estudo prospectivo comparativo [tese]. São Paulo: Faculdade de Ciências Médicas da Santa Casa de São Paulo; 2022. https://fcmsantacasasp.edu.br/wp-content/uploads/2022/07/2022-Cristhopher-Lucca-Stoffel_Final.pdf
- 20 Clinical and Laboratory Standards Institute (CLSI). Standardization of Antimicrobial Disk Diffusion Susceptibility Testing: Approved Standard - Eighth Edition. Wayne, PA: CLSI; document M02–A08, 2010, Vol. 23, No. 1
- 21 Pieske O, Kaltenhauser F, Pichlmaier L, Schramm N, Trentzsch H, Löffler T. et al. Clinical benefit of hydroxyapatite-coated pins compared with stainless steel pins in external fixation at the wrist: a randomised prospective study. Injury 2010; 41 (10) 1031-1036
- 22 McEvoy JP, Martin P, Khaleel A, Dissanayeke S. Titanium Kirschner wires resist biofilms better than stainless steel and hydroxyapatite-coated wires: an in vitro study. Strateg Trauma Limb Reconstr 2019; 14 (02) 57-64
- 23 Oga M, Arizono T, Sugioka Y. Bacterial adherence to bioinert and bioactive materials studied in vitro. Acta Orthop Scand 1993; 64 (03) 273-276
- 24 Ravn C, Ferreira IS, Maiolo E, Overgaard S, Trampuz A. Microcalorimetric detection of staphylococcal biofilm growth on various prosthetic biomaterials after exposure to daptomycin. J Orthop Res 2018; 36 (10) 2809-2816
- 25 Arciola CR, Montanaro L, Moroni A, Giordano M, Pizzoferrato A, Donati ME. Hydroxyapatite-coated orthopaedic screws as infection resistant materials: in vitro study. Biomaterials 1999; 20 (04) 323-327
- 26 W-Dahl A, Toksvig-Larsen S. Infection prophylaxis: a prospective study in 106 patients operated on by tibial osteotomy using the hemicallotasis technique. Arch Orthop Trauma Surg 2006; 126 (07) 441-447