CC BY 4.0 · Eur J Dent
DOI: 10.1055/s-0045-1809312
Review Article

Development of Hydroxyapatite as a Bone Implant Biomaterial for Triggering Osteogenesis

1   Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
,
1   Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
,
1   Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
,
2   Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
,
2   Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
,
3   Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
,
4   Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
,
2   Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
› Author Affiliations

Funding This research was funded by the Ministry of Education, Culture, Research and Technology of the Republic of Indonesia through Research Grant PMDSU 2024 scheme No. 1021/UN3/2024.

Abstract

Over the past decade, the occurrence of bone defects has seen a notable rise. In both developed and developing nations, their prevalence tends to increase in parallel with population density and levels of physical activity. Various therapeutic approaches have been implemented to address bone fractures, focusing on preventing infections, promoting faster healing, and restoring normal bone function. Among these, bone grafting—a surgical technique involving the use of biomaterials—remains a widely utilized method for bone replacement. This review aims to identify biomaterials that have biocompatibility with bone, osteoinductive, and osteoconductive properties so that they can trigger good osteogenesis. This review is based on a compilation of publications from various databases related to factors affecting the process of bone ossification. This study also evaluates the characteristics of hydroxyapatite biomaterials that play a role in inducing osteogenesis. The phosphate/calcium ratio close to 1.67, porosity in the range of 40 to 60%, pore diameter of 200 to 900 nm, and crystallinity of 40 to 60% will help the osteogenesis to perform well. The results of this study highlight the advantages of hydroxyapatite in terms of its osteoconductive, osteoinductive, and osteointegrative properties, which can trigger osteogenesis.

Authors' Contributions

Conceptualization: J. K. and M.T. Methodology: J.K., M.T., and A.S.B. Validation: J.K., A.M., and A.S.B. Writing—original draft preparation: Y.A.P., H.D.M., and F.D. Writing—review and editing: J.K., M.T., A.M., and M.R. Supervision: J.K., M.R., and M.T. Project administration: J.K. All authors have read and agreed to the published version of the manuscript.




Publication History

Article published online:
27 May 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev 2008; 14 (02) 179-186
  • 2 Khotib J, Gani MA, Budiatin AS, Lestari MLAD, Rahadiansyah E, Ardianto C. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: direct involvement of hydroxyapatite as a biomaterial. Pharmaceuticals (Basel) 2021; 14 (07) 615
  • 3 Khotib J, Marhaeny HD, Miatmoko A. et al. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41 (09) 10257-10276
  • 4 Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci 2013; 5 (Suppl. 01) S125-S127
  • 5 Schmidt AH. Autologous bone graft: is it still the gold standard?. Injury 2021; 52 (Suppl. 02) S18-S22
  • 6 Jiann Chong ET, Ng JW, Lee P-C. Classification and medical applications of biomaterials–a mini review. BIO Integr 2023; 4 (02) 54-61
  • 7 Raghavan R, Pa S, Raj JS, Raju R, Vs M. Review on recent advancements of bone regeneration in dental implantology. Int J Appl Dent Sci 2018; 4 (02) 161-163
  • 8 Samarawickrama KG. A review on bone grafting, bone substitutes and bone tissue engineering. ACM Int Conf Proceeding Ser 2018 ;(September): 244-251
  • 9 Samadian H, Mobasheri H, Azami M, Faridi-Majidi R. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Sci Rep 2020; 10 (01) 14853
  • 10 Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, B, Polym Phys 2011; 49 (12) 832-864
  • 11 Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 2015; 3: 202
  • 12 Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 2018; 6 (02) 90-99
  • 13 Ozturk S, Yetmez M. Studies on characterization of bovine hydroxyapatite/CaTiO3 biocomposites. Adv Mater Sci Eng 2016; :6987218.
  • 14 Budiatin AS, Pramesti MP, Nurfinti WO, Pratama YA, Ratri DMN, Ardianto C. Effect of diclofenac sodium on the cartilage-regeneration potential of the chitosan-gelatin-chondroitin sulfate scaffold. Iraqi J Vet Sci 2025; 39 (02) 243-251
  • 15 Suyatno A, Nurfinti WO, Kusuma CPA. et al. Effectiveness of bilayer scaffold containing chitosan/gelatin/diclofenac and bovine hydroxyapatite on cartilage/subchondral regeneration in rabbit joint defect models. Adv Pharmacol Pharm Sci 2024; 2024: 6987676
  • 16 Budiatin AS. Samirah, Gani MA, Nilamsari WP, Ardianto C. The characterization of bovine bone-derived hydroxyapatite isolated using novel non-hazardous method. J Biomim Biomater Biomed Eng 2020; 45: 49-56
  • 17 Budiatin AS, Gani MA, Ardianto C. et al. The impact of glutaraldehyde on the characteristics of bovine hydroxyapatite-gelatin based bone scaffold as gentamicin delivery system. J Basic Clin Physiol Pharmacol 2021; 32 (04) 687-691
  • 18 Rizaludin A, Mahendra I, Febrian MB. et al Phosphorus-32 labelled irradiated bovine hydroxyapatite for radiosynovectomy. J Radioanal Nucl Chem 2025; 334: 1195-1204
  • 19 Cottrell JA, Vales FM, Schachter D. et al. Osteogenic activity of locally applied small molecule drugs in a rat femur defect model. J Biomed Biotechnol 2010; 2010: 597641
  • 20 Budiatin AS, Zainuddin M, Khotib J.Ferdiansyah. Pelepasan gentamisin dari pelet bovine-hydroxyapatite-gelatin sebagai sistem penghantaran obat dan pengisi tulang [in Indonesian]. J Farm Dan Ilmu Kefarmasian Indones 2014; 1 (01) 10-15
  • 21 Rahavi SS, Ghaderi O, Monshi A, Fathi MH. A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources. Russ J Non-Ferrous Met 2017; 58 (03) 276-286
  • 22 Ooi CY, Hamdi M, Ramesh S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 2007; 33 (07) 1171-1177
  • 23 Brzezińska-Miecznik J, Haberko K, Sitarz M, Bućko MM, Macherzyńska B. Hydroxyapatite from animal bones - extraction and properties. Ceram Int 2015; 41 (03) 4841-4846
  • 24 Mohd Pu'ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC. Syntheses of hydroxyapatite from natural sources. Heliyon 2019; 5 (05) e01588
  • 25 Pokhrel S. Hydroxyapatite: preparation, properties and its biomedical applications. Adv Chem Eng Sci 2018; 08 (04) 225-240
  • 26 Kusrini E, Sontang M. Characterization of x-ray diffraction and electron spin resonance: effects of sintering time and temperature on bovine hydroxyapatite. Radiat Phys Chem 2012; 81 (02) 118-125
  • 27 Khotib J, Lasandara CS, Samirah S, Budiatin AS. Acceleration of bone fracture healing through the use of natural bovine hydroxyapatite implant on bone defect animal model. Folia Medica Indones 2019; 55 (03) 176
  • 28 Budiatin AS, Zainuddin M, Khotib J. Biocompatable composite as gentamicin delivery system for osteomyelitis and bone regeneration. Int J Pharm Pharm Sci 2014; 6 (03) 223-226
  • 29 Li D, Nie W, Chen L. et al. Self-assembled hydroxyapatite-graphene scaffold for photothermal cancer therapy and bone regeneration. J Biomed Nanotechnol 2018; 14 (12) 2003-2017
  • 30 Germaini M-M, Detsch R, Grünewald A. et al. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomed Mater 2017; 12 (03) 035008
  • 31 Senthil R, Çakır S. Nano apatite growth on demineralized bone matrix capped with curcumin and silver nanoparticles: dental implant mechanical stability and optimal cell growth analysis. J Oral Biosci 2024; 66 (01) 232-240
  • 32 Senthil R. Formation of bone tissue apatite on starch-based nanofiber-capped nanohydroxyapatite and reduced graphene oxide: a preliminary study. Oral Maxillofac Surg 2024; 29 (01) 6
  • 33 Senthil R. Epoxy resin bioactive dental implant capped with hydroxyapatite and curcumin nanoparticles: a novel approach. Oral Maxillofac Surg 2024; 28 (03) 1303-1312
  • 34 Sobczak-Kupiec A, Drabczyk A, Florkiewicz W. et al. Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials (Basel) 2021; 14 (09) 2096
  • 35 Ghanem W, Hussien I, Kilany O, Ellaboudy I. Effect of nano-hydroxyapatite graft on socket healing after teeth extraction. ARC J Dent Sci 2016; 1 (02) 4-12
  • 36 Senti G, Freiburghaus AU, Larenas-Linnemann D. et al. Intralymphatic immunotherapy: update and unmet needs. Int Arch Allergy Immunol 2019; 178 (02) 141-149
  • 37 Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 2015; 11 (01) 45-54
  • 38 Gasser JA, Kneissel M. Chapter 2 Bone Physiology and Biology. 2017. Cham, Switzerland: Springer;
  • 39 Bonjour JP. Calcium and phosphate: a duet of ions playing for bone health. J Am Coll Nutr 2011; 30 (5, Suppl 1): 438S-448S
  • 40 Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 2010; 46 (03) 571-576
  • 41 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26 (27) 5474-5491
  • 42 Li J, Zhi W, Xu T. et al. Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo. Regen Biomater 2016; 3 (05) 285-297
  • 43 Itälä AI, Ylänen HO, Ekholm C, Karlsson KH, Aro HT. Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits. J Biomed Mater Res 2001; 58 (06) 679-683
  • 44 Wang H, Zhi W, Lu X. et al. Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures. Acta Biomater 2013; 9 (09) 8413-8421
  • 45 Yoshikawa M, Tsuji N, Shimomura Y, Hayashi H, Ohgushi H. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds. Calcif Tissue Int 2008; 83 (02) 139-145
  • 46 Lee JH, Parthiban P, Jin GZ, Knowles JC, Kim HW. Materials roles for promoting angiogenesis in tissue regeneration. Prog Mater Sci 2021; 117: 100732
  • 47 Torres FCL, De Sousa EMB, Cipreste MF. A brief review on hydroxyapatite nanoparticles interactions with biological constituents. J Biomater Nanobiotechnol 2022; 13 (01) 24-44
  • 48 Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 2015; 70: 19-27
  • 49 Ohlsson C, Bengtsson B-A, Isaksson OGP, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev 1998; 19 (01) 55-79
  • 50 Laron Z, Klinger B. Laron syndrome: clinical features, molecular pathology and treatment. Horm Res 1994; 42 (4-5): 198-202
  • 51 Cool SM, Grünert M, Jackson R, Li H, Nurcombe V, Waters MJ. Role of growth hormone receptor signaling in osteogenesis from murine bone marrow progenitor cells. Biochem Biophys Res Commun 2005; 338 (02) 1048-1058
  • 52 De Ugarte DA, Alfonso Z, Zuk PA. et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89 (2-3): 267-270
  • 53 Nirwana I, Munadziroh E, Yuliati A. et al. Ellagic acid and hydroxyapatite promote angiogenesis marker in bone defect. J Oral Biol Craniofac Res 2022; 12 (01) 116-120
  • 54 Szulc P, Bauer DC. Biochemical Markers of Bone Turnover in Osteoporosis. 4th ed.. Massachusetts, USA: Academic Press; 2013
  • 55 Granito RN, Muniz Renno AC, Yamamura H, de Almeida MC, Menin Ruiz PL, Ribeiro DA. Hydroxyapatite from fish for bone tissue engineering: a promising approach. Int J Mol Cell Med 2018; 7 (02) 80-90
  • 56 Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014; 14 (01) 15-56
  • 57 De Souza Nunes LS, De Oliveira RV, Holgado LA, Nary Filho H, Ribeiro DA, Matsumoto MA. Use of bovine hydroxyapatite with or without biomembrane in sinus lift in rabbits: histopathologic analysis and immune expression of core binding factor 1 and vascular endothelium growth factor. J Oral Maxillofac Surg 2011; 69 (04) 1064-1069
  • 58 Romeo U, Rocchetti F, Montori A. Criticisms and controversies in the diagnosis of cheilitis. Proceedings 2019; 35 (01) 8
  • 59 Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie ABM. The role of vascular endothelial growth factor in ossification. Int J Oral Sci 2012; 4 (02) 64-68
  • 60 Anghelescu VM, Neculae I, Dincă O. et al. Inflammatory-driven angiogenesis in bone augmentation with bovine hydroxyapatite, B-tricalcium phosphate, and bioglasses: a comparative study. J Immunol Res 2018; 2018: 9349207
  • 61 Raftery RM, Mencía Castaño I, Chen G. et al. Translating the role of osteogenic-angiogenic coupling in bone formation: highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 2017; 149: 116-127
  • 62 Li X, Wei L, Li J. et al. Multifunctional SDF-1-loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration. Appl Mater Today 2021; 22: 100942
  • 63 Yang D, Sun S, Wang Z, Zhu P, Yang Z, Zhang B. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas. Cell Reprogram 2013; 15 (03) 206-215
  • 64 Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2020; 8 (41) 9404-9427
  • 65 Wei F, Xiao Y. Modulation of the osteoimmune environment in the development of biomaterials for osteogenesis. Adv Exp Med Biol 2018; 1077: 69-86
  • 66 Chen Z, Klein T, Murray RZ. et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 2016; 19 (06) 304-321
  • 67 Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation effect of biomaterials on bone formation. J Funct Biomater 2022; 13 (03) 103
  • 68 Lee E, Ko JY, Kim J, Park JW, Lee S, Im GI. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway. Biomater Sci 2019; 7 (11) 4588-4602
  • 69 Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8 (02) 272-288