Subscribe to RSS
DOI: 10.1055/s-0045-1807712
Common Mistakes in Diagnosis of Subchondral Bone Lesions
Authors

Abstract
Non-neoplastic and noninfectious subchondral bone lesions incorporate several entities: acute traumatic injuries, insufficiency and fatigue fractures, primary or secondary osteonecrosis, osteochondritis dissecans, subchondral abnormalities related to cartilage loss, and marrow changes accompanying disuse or other causes of accelerated bone remodeling. Differentiating these conditions on imaging can be challenging due to overlapping imaging features, technical aspects, and insufficient clinical history. This review discusses how to avoid common mistakes in the imaging diagnosis of subchondral lesions, focusing on descriptive terminology, imaging scenarios, and reporting key imaging features that affect prognosis in these lesions.
Publication History
Article published online:
07 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Gorbachova T, Amber I, Beckmann NM. et al. Nomenclature of subchondral nonneoplastic bone lesions. AJR Am J Roentgenol 2019; 213 (05) 963-982
- 2 Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000; 215 (03) 835-840
- 3 Pathria MN, Chung CB, Resnick DL. Acute and stress-related injuries of bone and cartilage: pertinent anatomy, basic biomechanics, and imaging perspective. Radiology 2016; 280 (01) 21-38
- 4 Lecouvet FE, Vande Berg BC, Maldague BE. et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol 1998; 170 (01) 71-77
- 5 Vande Berg BC, Malghem JJ, Lecouvet FE, Jamart J, Maldague BE. Idiopathic bone marrow edema lesions of the femoral head: predictive value of MR imaging findings. Radiology 1999; 212 (02) 527-535
- 6 Ilardi CF, Sokoloff L. Secondary osteonecrosis in osteoarthritis of the femoral head. Hum Pathol 1984; 15 (01) 79-83
- 7 Gorbachova T, Melenevsky Y, Cohen M, Cerniglia BW. Osteochondral lesions of the knee: differentiating the most common entities at MRI. Radiographics 2018; 38 (05) 1478-1495
- 8 Sonoda K, Yamamoto T, Motomura G, Karasuyama K, Kubo Y, Iwamoto Y. Fat-suppressed T2-weighted MRI appearance of subchondral insufficiency fracture of the femoral head. Skeletal Radiol 2016; 45 (11) 1515-1521
- 9 Murphey MD, Foreman KL, Klassen-Fischer MK, Fox MG, Chung EM, Kransdorf MJ. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics 2014; 34 (04) 1003-1028
- 10 Mourad C, Omoumi P, Vande Berg B. The many faces of marrow necrosis. Semin Musculoskelet Radiol 2023; 27 (01) 103-113
- 11 Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 2000; 82 (06) 858-866
- 12 Edmonds EW, Shea KG. Osteochondritis dissecans: editorial comment. Clin Orthop Relat Res 2013; 471 (04) 1105-1106
- 13 Laor T, Zbojniewicz AM, Eismann EA, Wall EJ. Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis?. AJR Am J Roentgenol 2012; 199 (05) 1121-1128
- 14 Nguyen JC, Patel V, Gendler L. et al. Medial femoral condyle OCD (osteochondritis dissecans): correlation between imaging and arthroscopy. Skeletal Radiol 2025; 54 (04) 789-806
- 15 Carey JL, Wall EJ, Grimm NL. et al; Research in OsteoChondritis of the Knee (ROCK) Group. Novel arthroscopic classification of osteochondritis dissecans of the knee: a multicenter reliability study. Am J Sports Med 2016; 44 (07) 1694-1698
- 16 Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 1983; 31 (01) 3-9
- 17 Allman RM, Brower AC. Circulatory patterns of deossification. Radiol Clin North Am 1981; 19 (04) 553-569
- 18 Resnick D. Diagnosis of Bone and Joint Disorders. 3rd ed.. Philadelphia, PA: Saunders; 1995
- 19 Vande Berg BC, Mourad C, Omoumi P, Malghem J. Magnetic resonance imaging of accelerated bone remodeling. Semin Musculoskelet Radiol 2023; 27 (01) 114-123
- 20 Belair JA, Jung J, Desai V, Morrison WB, DeLuca PF, Zoga AC. Bone bruise vs. non-displaced fracture on MRI: a novel grading system for predicting return-to-play. Skeletal Radiol 2024; 53 (05) 947-955
- 21 Yoon BH, Mont MA, Koo KH. et al. The 2019 revised version of Association Research Circulation Osseous staging system of osteonecrosis of the femoral head. J Arthroplasty 2020; 35 (04) 933-940
- 22 Kolb AR, Patsch JM, Vogl WD. et al. The role of the subchondral layer in osteonecrosis of the femoral head: analysis based on HR-QCT in comparison to MRI findings. Acta Radiol 2019; 60 (04) 501-508
- 23 Hamada H, Takao M, Sakai T, Sugano N. Subchondral fracture begins from the bone resorption area in osteonecrosis of the femoral head: a micro-computerised tomography study. Int Orthop 2018; 42 (07) 1479-1484
- 24 Mourad C, Acid S, Michoux N, Awad A, Berg BV. Collapse-related bone changes in osteonecrotic femoral heads at multidetector CT: comparison between femoral heads with limited and advanced collapse. J Belg Soc Radiol 2022; 106 (01) 55
- 25 Mourad C, Galant C, Wacheul E, Kirchgesner T, Michoux N, Vande Berg B. Topology of microfractures in osteonecrotic femoral heads at μCT and histology. Bone 2020; 141: 115623
- 26 Mourad CJ, Libert F, Gangji V, Michoux N, Vande Berg BC. Collapse-related bone changes at multidetector CT in ARCO 1-2 osteonecrotic femoral heads: correlation with clinical and MRI data. Eur Radiol 2023; 33 (02) 1486-1495
- 27 Stevens K, Tao C, Lee SU. et al. Subchondral fractures in osteonecrosis of the femoral head: comparison of radiography, CT, and MR imaging. AJR Am J Roentgenol 2003; 180 (02) 363-368
- 28 Koo KH, Ahn IO, Kim R. et al. Bone marrow edema and associated pain in early stage osteonecrosis of the femoral head: prospective study with serial MR images. Radiology 1999; 213 (03) 715-722
- 29 Iida S, Harada Y, Shimizu K. et al. Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis. AJR Am J Roentgenol 2000; 174 (03) 735-743
- 30 Meier R, Kraus TM, Schaeffeler C. et al. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head. Eur Radiol 2014; 24 (09) 2271-2278
- 31 Kim J, Lee SK, Kim JY, Kim JHCT. CT and MRI findings beyond the subchondral bone in osteonecrosis of the femoral head to distinguish between ARCO stages 2 and 3A. Eur Radiol 2023; 33 (07) 4789-4800
- 32 Koo KH, Mont MA, Cui Q. et al. The 2021 Association Research Circulation Osseous classification for early-stage osteonecrosis of the femoral head to computed tomography-based study. J Arthroplasty 2022; 37 (06) 1074-1082
- 33 Takeda M, Higuchi H, Kimura M, Kobayashi Y, Terauchi M, Takagishi K. Spontaneous osteonecrosis of the knee: histopathological differences between early and progressive cases. J Bone Joint Surg Br 2008; 90 (03) 324-329
- 34 Plett SK, Hackney LA, Heilmeier U. et al. Femoral condyle insufficiency fractures: associated clinical and morphological findings and impact on outcome. Skeletal Radiol 2015; 44 (12) 1785-1794
- 35 Malghem J, Lecouvet F, Vande Berg B, Kirchgesner T, Omoumi P. Subchondral insufficiency fractures, subchondral insufficiency fractures with osteonecrosis, and other apparently spontaneous subchondral bone lesions of the knee-pathogenesis and diagnosis at imaging. Insights Imaging 2023; 14 (01) 164
- 36 Aglietti P, Insall JN, Buzzi R, Deschamps G. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br 1983; 65 (05) 588-597
- 37 Kijowski R, Stanton P, Fine J, De Smet A. Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 2006; 238 (03) 943-949
- 38 Markhardt BK, Huang BK, Spiker AM, Chang EY. Interpretation of cartilage damage at routine clinical MRI: how to match arthroscopic findings. Radiographics 2022; 42 (05) 1457-1473
- 39 Flemming DJ, Gustas-French CN. Rapidly progressive osteoarthritis: a review of the clinical and radiologic presentation. Curr Rheumatol Rep 2017; 19 (07) 42
- 40 Graf DN, Thallinger A, Zubler V, Sutter R. Intraarticular steroid injection in hip and knee with fluoroscopic guidance: reassessing safety. Radiology 2022; 304 (02) 363-369
- 41 Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Guermazi A. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought?. Radiology 2019; 293 (03) 656-663
- 42 Gulati A, Kamel SI, Desai V, Belair JA. Presence of subchondral fracture in cases diagnosed as transient osteoporosis of the hip: a retrospective independent reader-based study. Skeletal Radiol 2024; 53 (05) 871-879
- 43 Klontzas ME, Vassalou EE, Zibis AH, Bintoudi AS, Karantanas AH. MR imaging of transient osteoporosis of the hip: an update on 155 hip joints. Eur J Radiol 2015; 84 (03) 431-436
- 44 Malizos KN, Zibis AH, Dailiana Z, Hantes M, Karachalios T, Karantanas AH. MR imaging findings in transient osteoporosis of the hip. Eur J Radiol 2004; 50 (03) 238-244
- 45 Miyanishi K, Yamamoto T, Nakashima Y. et al. Subchondral changes in transient osteoporosis of the hip. Skeletal Radiol 2001; 30 (05) 255-261
- 46 Vande Berg BC, Lecouvet FE, Koutaissoff S, Simoni P, Malghem J. Bone marrow edema of the femoral head and transient osteoporosis of the hip. Eur J Radiol 2008; 67 (01) 68-77
- 47 Wall EJ, Polousky JD, Shea KG. et al; Research on OsteoChondritis Dissecans of the Knee (ROCK) Study Group. Novel radiographic feature classification of knee osteochondritis dissecans: a multicenter reliability study. Am J Sports Med 2015; 43 (02) 303-309
- 48 Hussain ZB, Mathew ST, Feroe AG, Lins LAB, Miller P, Kocher MS. Novel magnetic resonance imaging classification of osteochondritis dissecans of the knee: a reliability study. J Pediatr Orthop 2021; 41 (06) e422-e426
- 49 Feroe AG, Flaugh RA, Majumdar A, Baxter TA, Miller PE, Kocher MS. Validation of a novel magnetic resonance imaging classification for osteochondritis dissecans of the knee. j Pediatr Orthop 2022; 42 (05) e486-e491
- 50 Fabricant PD, Milewski MD, Kostyun RO. et al; Research in Osteochondritis of the Knee (ROCK) Study Group. Osteochondritis dissecans of the knee: an interrater reliability study of magnetic resonance imaging characteristics. Am J Sports Med 2020; 48 (09) 2221-2229
- 51 Andriolo L, Solaro L, Altamura SA, Carey JL, Zaffagnini S, Filardo G. Classification systems for knee osteochondritis dissecans: a systematic review. Cartilage 2022 ;13(3):19476035221121789
- 52 De Smet AA, Fisher DR, Graf BK, Lange RH. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol 1990; 155 (03) 549-553
- 53 De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996; 25 (02) 159-163
- 54 Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 2008; 248 (02) 571-578
- 55 Heywood CS, Benke MT, Brindle K, Fine KM. Correlation of magnetic resonance imaging to arthroscopic findings of stability in juvenile osteochondritis dissecans. Arthroscopy 2011; 27 (02) 194-199
- 56 Nguyen JC, Gendler L, Patel V, Yaya-Quezada C, Lawrence JT, Ganley TJ. Osteochondritis dissecans of the medial femoral condyle: MRI findings of instability. AJR Am J Roentgenol 2025; 224 (01) e2431724
- 57 White LM, Powell TI, Tomlinson G, Boynton E. Increased subcortical patellar signal intensity at T2-weighted MR imaging: a subacute finding after knee injury. Radiology 2005; 236 (03) 952-957
- 58 de Abreu MR, Wesselly M, Chung CB, Resnick D. Bone marrow MR imaging findings in disuse osteoporosis. Skeletal Radiol 2011; 40 (05) 571-575
- 59 Nardo L, Sandman DN, Virayavanich W. et al. Bone marrow changes related to disuse. Eur Radiol 2013; 23 (12) 3422-3431
- 60 Gondim Teixeira PA, Balaj C, Marie B. et al. Linear signal hyperintensity adjacent to the subchondral bone plate at the knee on T2-weighted fat-saturated sequences: imaging aspects and association with structural lesions. Skeletal Radiol 2014; 43 (11) 1589-1598
- 61 Vande Berg B, Kirchgesner T, Mourad C, Acid S, Malghem J. Regional osteopenia or regional acceleratory phenomenon: what have we missed at MRI?. Diagn Interv Imaging 2021; 102 (09) 577-580
- 62 Elias I, Zoga AC, Schweitzer ME, Ballehr L, Morrison WB, Raikin SM. A specific bone marrow edema around the foot and ankle following trauma and immobilization therapy: pattern description and potential clinical relevance. Foot Ankle Int 2007; 28 (04) 463-471