CC BY 4.0 · Eur J Dent
DOI: 10.1055/s-0045-1806958
Review Article

Magnesium Infusion on Dental Implants and Its Impact on Osseointegration and Biofilm Development: A Review

Dyah Anindya Widyasrini
1   Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
2   Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
,
Mutiara Annisa
1   Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
,
Siti Sunarintyas
1   Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
,
Lakshman Samaranayake
3   Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Sai Ying Pun, Hong Kong
4   Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth, Pimpri, Pune, India
,
1   Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
› Author Affiliations

Abstract

Dental implants have gained global popularity as a treatment option for tooth loss. The success of dental implants depends on their optimal integration into the tissues of the alveolar bone and the periodontium. However, several factors can hinder the proper osseointegration of implants, with the growth of biofilm on the implant surface and subsequent peri-implant infections being significant concerns. To overcome this challenge, researchers have explored the incorporation of antimicrobial agents onto metallic implant surfaces to mitigate biofilm growth. Ideally these agents should promote osteogenesis while exhibiting antibacterial effects. Magnesium (Mg) has emerged as a promising dual-function implant coating due to its osteogenic and antibacterial properties. Despite several studies, the precise mechanisms behind osteoinductive and antimicrobial effect of Mg is unclear, as yet. This review aims to collate and discuss the utility of Mg as a dental implant coating, its impact on the osteogenic process, potential in mitigating microbial growth, and prospects for the future. A comprehensive literature search was conducted across several databases and the findings reveal the promise of Mg as a dual-function dental implant coating material, both as a standalone agent and in combination with other materials. The antibacterial effect of Mg is likely to be due to its (1) toxicity particularly at high concentrations, (2) the production or reactive oxygen species, and (3) pH modulation, while the osteoinductive effect is due to a complex series of cellular and biochemical pathways. Despite its potential both as a standalone and composite coating, challenges such as degradation rate, leaching, and long-term stability must be addressed. Further research is needed to understand the utility of Mg as an implant coating material, particularly in relation to its antibacterial activity, osseointegration, and longevity in the oral milieu.



Publication History

Article published online:
23 April 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Zohrabian VM, Sonick M, Hwang D, Abrahams JJ. Dental implants. Semin Ultrasound CT MR 2015; 36 (05) 415-426
  • 2 Hong DGK, Oh JH. Recent advances in dental implants. Maxillofac Plast Reconstr Surg 2017; 39 (01) 33
  • 3 Elani HW, Starr JR, Da Silva JD, Gallucci GO. Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. J Dent Res 2018; 97 (13) 1424-1430
  • 4 Brunette DM, Tengvall P, Textor M, Thomsen P. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Response, and Medical Applications. Heidelberg: Springer; 2007
  • 5 Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res 2019; 21 (Suppl. 01) 4-7
  • 6 Dong H, Liu H, Zhou N. et al. Surface modified techniques and emerging functional coating of dental implants. Coatings 2020; 10: 1012
  • 7 Chen L, Yan X, Tan L. et al. In vitro and in vivo characterization of novel calcium phosphate and magnesium (CaP-Mg) bilayer coated titanium for implantation. Surf Coat Tech 2019; 374: 784-796
  • 8 Almehmadi AH. Effect of magnesium-based coatings on titanium or zirconia substrates on bone regeneration and implant osseointegration – a systematic review. Front Mater 2021; 8: 754697
  • 9 Meng F, Yin Z, Ren X, Geng Z, Su J. Construction of local drug delivery system on titanium-based implants to improve osseointegration. Pharmaceutics 2022; 14 (05) 1069
  • 10 Feller L, Chandran R, Khammissa RAG. et al. Osseointegration: biological events in relation to characteristics of the implant surface. SADJ 2014; 69 (03) 112-117 , 114–117
  • 11 Webber LP, Chan HL, Wang HL. Will zirconia implants replace titanium implants?. Appl Sci (Basel) 2021; 11: 6776
  • 12 Kolenbrander PE, Palmer Jr RJ, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000 2006; 42 (01) 47-79
  • 13 Costa RC, Abdo VL, Mendes PHC. et al. Microbial corrosion in titanium-based dental implants: how tiny bacteria can create a big problem?. J Bio Tribocorros 2021; 7 (04) 151
  • 14 Souza JGS, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão VAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 2020; 24 (01) 102008
  • 15 Armellini D, Reynolds MA, Harro JM, Molly L. Biofilm Formation on Natural Teeth and Dental Implants: What is the Difference?. In: Shirtliff M, Leid JG. (eds) The Role of Biofilms in Device-Related Infections. Springer Series on Biofilms. Berlin, Heidelberg: Springer; 2008: 3
  • 16 Mas-Moruno C, Su B, Dalby MJ. Multifunctional coatings and nanotopographies: toward cell instructive and antibacterial implants. Adv Healthc Mater 2019; 8 (01) e1801103
  • 17 Lu X, Wu Z, Xu K. et al. Multifunctional coatings of titanium implants toward promoting osseointegration and preventing infection: recent developments. Front Bioeng Biotechnol 2021; 9: 783816
  • 18 Amirtharaj Mosas KK, Chandrasekar AR, Dasan A, Pakseresht A, Galusek D. Recent advancement in materials and coating for biomedical implants. Gels 2022; 8 (05) 323
  • 19 Kheder W, Al Kawas S, Khalaf K, Samsudin AR. Impact of tribocorrosion and titanium particles release on dental implant complications - a narrative review. Jpn Dent Sci Rev 2021; 57: 182-189
  • 20 Li Q, Song S, Li J. et al. Antibacterial properties and biocompatibility of hydroxyapatite coating doped with various Cu contents on titanium. Mater Trans 2022; 63 (07) 1072-1079
  • 21 Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L. Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surf A Physicochem Eng Asp 2014; 451: 172-180
  • 22 Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci 2019; 20 (02) 449
  • 23 Wang Y, Geng Z, Huang Y. et al. Unraveling the osteogenesis of magnesium by the activity of osteoblasts in vitro. J Mater Chem B 2018; 6 (41) 6615-6621
  • 24 Luque-Agudo V, Fernández-Calderón MC, Pacha-Olivenza MA, Pérez-Giraldo C, Gallardo-Moreno AM, González-Martín ML. The role of magnesium in biomaterials related infections. Colloids Surf B Biointerfaces 2020; 191: 110996
  • 25 Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications – a review. J Magnes Alloys 2017; 5 (03) 286-312
  • 26 Rude RK. Magnesium Homeostasis. In: Bilezikian JP, Raisz LG, Martin TJ. (eds) Principles of Bone Biology (Third Edition). New York, United States: Academic Press; 2008: 487-513
  • 27 Robinson DA, Griffith RW, Shechtman D, Evans RB, Conzemius MG. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater 2010; 6 (05) 1869-1877
  • 28 Dong C, He G, Zheng W, Bian T, Li M, Zhang D. Study on antibacterial mechanism of Mg(OH)2 nanoparticles. Mater Lett 2014; 134: 286-289
  • 29 Vergara-Irigaray M, Maira-Litrán T, Merino N, Pier GB, Penadés JR, Lasa I. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology (Reading) 2008; 154 (Pt 3): 865-877
  • 30 Pan X, Wang Y, Chen Z. et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2 . ACS Appl Mater Interfaces 2013; 5 (03) 1137-1142
  • 31 Wu X, Li L, Tao W. et al. Built-up sodium alginate/chlorhexidine multilayer coating on dental implants with initiating anti-infection and cyto-compatibility sequentially for soft-tissue sealing. Biomater Adv 2023; 151: 213491
  • 32 Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys - a review. Acta Biomater 2012; 8 (07) 2442-2455
  • 33 Kligman S, Ren Z, Chung CH. et al. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med 2021; 10 (08) 1641
  • 34 Zhao Y, Bai J, Xue F. et al. Smart self-healing coatings on biomedical magnesium alloys: a review. Smart Mater Manuf 2023; 1: 100022
  • 35 Smeets R, Stadlinger B, Schwarz F. et al. Impact of dental implant surface modifications on osseointegration. BioMed Res Int 2016; 2016: 6285620
  • 36 Shchukin D, Möhwald H. Materials science. A coat of many functions. Science 2013; 341 (6153): 1458-1459
  • 37 Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 2019; 83: 37-54
  • 38 Li D, Dai D, Xiong G, Lan S, Zhang C. Composite nanocoatings of biomedical magnesium alloy implants: advantages, mechanisms, and design strategies. Adv Sci (Weinh) 2023; 10 (18) e2300658
  • 39 Yin ZZ, Qi WC, Zeng RC. et al. Advances in coatings on biodegradable magnesium alloys. J Magnes Alloys 2020; 8 (01) 42-65
  • 40 Liu Z, Gao W. Electroless nickel plating on AZ91 Mg alloy substrate. Surf Coat Tech 2006; 200 (16–17): 5087-5093
  • 41 Fan X, Du J, Li Y, Duan K, Liu G. Electrophoretic deposition of magnesium oxide coating on micro-arc oxidized titanium for antibacterial activity and biocompatibility. J Orthop Surg Res 2023; 18 (01) 901
  • 42 Sreekanth D, Rameshbabu N. Development and characterization of MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma electrolytic oxidation coupled with electrophoretic deposition. Mater Lett 2012; 68: 439-442
  • 43 Paek SY, Choe HC. Surface characteristics of dental implant doped with Si, Mg, Ca, and P ions via plasma electrolytic oxidation. Korean J Met Mater 2022; 60 (04) 263-271
  • 44 Zhao Q, Yi L, Jiang L, Ma Y, Lin H, Dong J. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating. Nanomedicine (Lond) 2019; 14 (09) 1109-1133
  • 45 Yu Y, Jin G, Xue Y, Wang D, Liu X, Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater 2017; 49: 590-603
  • 46 Tan X, Wang Z, Yang X. et al. Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII. Regen Biomater 2023; 10: rbad066
  • 47 Ishizaki T, Shigematsu I, Saito N. Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy. Surf Coat Tech 2009; 203 (16) 2288-2291
  • 48 Liu Y, Wu J, Zhang H, Wu Y, Tang C. Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties. Colloids Surf B Biointerfaces 2021; 203: 111768
  • 49 Li Q, Wang D, Qiu J, Peng F, Liu X. Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis. Biomater Sci 2018; 6 (05) 1227-1237
  • 50 Cheng S, Wang W, Wang D. et al. An in vitro and in vivo comparison of Mg(OH)2-, MgF2- and HA-coated Mg in degradation and osteointegration. Biomater Sci 2020; 8 (12) 3320-3333
  • 51 Zhang J, Cai B, Tan P. et al. Promoting osseointegration of titanium implants through magnesium- and strontium-doped hierarchically structured coating. J Mater Res Technol 2022; 16: 1547-1559
  • 52 Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 2012; 8 (01) 20-30
  • 53 Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 2015; 33 (11) 637-652
  • 54 Cai X, Cai J, Ma K. et al. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization. J Biomater Sci Polym Ed 2016; 27 (10) 954-971
  • 55 Predoi D, Iconaru SL, Predoi MV, Motellica-Heino M, Buton N, Meiger C. Obtaining and characterizing thin layers of magnesium-doped hydroxyapatite by dip coating procedure. Coatings 2020; 10 (06) 510
  • 56 Mihailescu N, Stan GE, Duta L. et al. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF2 or MgO for implants functionalization. Mater Sci Eng C 2016; 59: 863-874
  • 57 Hou HH, Lee BS, Liu YC. et al. Vapor-induced pore-forming atmospheric-plasma-sprayed zinc-, strontium-, and magnesium-doped hydroxyapatite coatings on titanium implants enhance new bone formation-an in vivo and in vitro investigation. Int J Mol Sci 2023; 24 (05) 4933
  • 58 Uzulmez B, Demirsoy Z, Can O, Gulseren G. Bioinspired multi-layer biopolymer-based dental implant coating for enhanced osseointegration. Macromol Biosci 2023; 23 (07) e2300057
  • 59 Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34 (34) 8533-8554
  • 60 Elia R, Michelson CD, Perera AL. et al. Silk electrogel coatings for titanium dental implants. J Biomater Appl 2015; 29 (09) 1247-1255
  • 61 Karacan I, Macha IJ, Choi G, Cazalbou S, Ben-Nissan N. Antibiotic containing poly lactic acid/hydroxyapatite biocomposite coatings for dental implant applications. Key Eng Mater 2017; 758: 120-125
  • 62 Geyao L, Deng Y, Wanglin C, Chengyong W. Development and application of physical vapor deposited coatings for medical devices: a review. Procedia CIRP 2020; 89: 250-262
  • 63 Rezaei A, Golenji RB, Alipour F, Hadavi MM, Mobasherpour I. Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants. Ceram Int 2020; 46 (16) 25374-25381
  • 64 Lee S, Chang YY, Lee J. et al. Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration. Biomater Sci 2020; 8 (12) 3404-3417
  • 65 Lian Q, Zheng S, Shi Z. et al. Using a degradable three-layer sandwich-type coating to prevent titanium implant infection with the combined efficient bactericidal ability and fast immune remodeling property. Acta Biomater 2022; 154: 650-666
  • 66 Liu J, Liu J, Attarilar S. et al. Nano-modified titanium implant materials: a way toward improved antibacterial properties. Front Bioeng Biotechnol 2020; 8: 576969
  • 67 Hudecki A, Kiryczyński G, Łos MJ. Biomaterials, definition, overview. In: Łos MJ, Hudecki A, Wiecheć E. eds. Stem Cells and Biomaterials for Regenerative Medicine. Cambridge: Academic Press; 2019: 85-98
  • 68 Blatt S, Pabst AM, Schiegnitz E. et al. Early cell response of osteogenic cells on differently modified implant surfaces: sequences of cell proliferation, adherence and differentiation. J Craniomaxillofac Surg 2018; 46 (03) 453-460
  • 69 Makishi S, Yamazaki T, Ohshima H. Osteopontin on the dental implant surface promotes direct osteogenesis in osseointegration. Int J Mol Sci 2022; 23 (03) 1039
  • 70 Li X, Li Y, Liao Y, Li J, Zhang L, Hu J. The effect of magnesium-incorporated hydroxyapatite coating on titanium implant fixation in ovariectomized rats. Int J Oral Maxillofac Implants 2014; 29 (01) 196-202
  • 71 Galli S, Naito Y, Karlsson J. et al. Osteoconductive potential of mesoporous titania implant surfaces loaded with magnesium: an experimental study in the rabbit. Clin Implant Dent Relat Res 2015; 17 (06) 1048-1059
  • 72 Yin Y, Jian L, Li B. et al. Mg-Fe layered double hydroxides modified titanium enhanced the adhesion of human gingival fibroblasts through regulation of local pH level. Mater Sci Eng C 2021; 131: 112485
  • 73 Zou F, Lv F, Ma X. et al. Dual drugs release from nanoporously bioactive coating on polyetheretherketone for enhancement of antibacterial activity, rBMSCs responses and osseointegration. Mater Des 2020; 188: 108433
  • 74 Wang JY, Liu YC, Lin GS. et al. Flame-sprayed strontium- and magnesium-doped hydroxyapatite on titanium implants for osseointegration enhancement. Surf Coat Tech 2020; 386: 125452
  • 75 Du Z, Yu X, Nie B. et al. Effects of magnesium coating on bone-implant interfaces with and without polyether-ether-ketone particle interference: a rabbit model based on porous Ti6Al4V implants. J Biomed Mater Res B Appl Biomater 2019; 107 (07) 2388-2396
  • 76 Ren Y, Sikder P, Lin B, Bhaduri SB. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater Sci Eng C 2018; 85: 107-113
  • 77 Pardun K, Treccani L, Volkmann E. et al. Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior. J Biomater Appl 2015; 30 (01) 104-118
  • 78 Zhao SF, Jiang QH, Peel S, Wang XX, He FM. Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clin Oral Implants Res 2013; 24 (Suppl A100): 34-41
  • 79 Xie Y, Zhai W, Chen L, Chang J, Zheng X, Ding C. Preparation and in vitro evaluation of plasma-sprayed Mg(2)SiO(4) coating on titanium alloy. Acta Biomater 2009; 5 (06) 2331-2337
  • 80 Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater 2020; 7 (01) 53-61
  • 81 Cerqueira A, García-Arnáez I, Romero-Gavilán F. et al. Complex effects of Mg-biomaterials on the osteoblast cell machinery: a proteomic study. Biomater Adv 2022; 137: 212826
  • 82 Nie X, Zhang X, Lei B, Shi Y, Yang J. Regulation of magnesium matrix composites materials on bone immune microenvironment and osteogenic mechanism. Front Bioeng Biotechnol 2022; 10: 842706
  • 83 Wang J, Ma XY, Feng YF. et al. Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res 2017; 179 (02) 284-293
  • 84 Ansari S, Ito K, Hofmann S. Alkaline phosphatase activity of serum affects osteogenic differentiation cultures. ACS Omega 2022; 7 (15) 12724-12733
  • 85 Qin H, Zhao Y, Cheng M. et al. Anti-biofilm properties of magnesium metal via alkaline pH. RSC Adv 2015; 5 (28) 21434-21444
  • 86 Lin Z, Sun X, Yang H. The role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys. Mater Des 2021; 198: 109350
  • 87 Nguyen NT, Grelling N, Wetteland CL, Rosario R, Liu H. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep 2018; 8 (01) 16260
  • 88 Rahim MI, Eifler R, Rais B, Mueller PP. Alkalization is responsible for antibacterial effects of corroding magnesium. J Biomed Mater Res A 2015; 103 (11) 3526-3532
  • 89 Song GL, Atrens A. Understanding magnesium corrosion - a framework for improved alloy performance. Adv Eng Mater 2003; 5 (12) 837-858
  • 90 Song GL, Atrens A, John DS, Wu X, Nairn JJ. The anodic dissolution of magnesium in chloride and sulphate solutions. Corros Sci 1997; 39: 1981-2004
  • 91 Samaranayake L. Samaranayake's Essential Microbiology for Dentistry. 6th ed.. Philadelphia: Elsevier; 2024
  • 92 Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 2005; 1717 (02) 67-88
  • 93 Zaatreh S, Haffner D, Strauss M. et al. Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co–culture model. Mol Med Rep 2017; 15 (04) 1624-1630
  • 94 Nostro A, Cellini L, Di Giulio M. et al. Effect of alkaline pH on staphylococcal biofilm formation. APMIS 2012; 120 (09) 733-742
  • 95 Demishtein K, Reifen R, Shemesh M. Antimicrobial properties of magnesium open opportunities to develop healthier food. Nutrients 2019; 11 (10) 2363
  • 96 Xie Y, Yang L. Calcium and magnesium ions are membrane-active against stationary-phase Staphylococcus aureus with high specificity. Sci Rep 2016; 6 (06) 20628
  • 97 Oknin H, Steinberg D, Shemesh M. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression. Front Microbiol 2015; 6: 907
  • 98 Rodríguez-Sánchez J, Pacha-Olivenza MA, González-Martín ML. Bactericidal effect of magnesium ions over planktonic and sessile Staphylococcus epidermidis and Escherichia coli . Mater Chem Phys 2019; 221: 342-348
  • 99 Feng H, Wang G, Jin W. et al. Systematic study of inherent antibacterial properties of magnesium-based biomaterials. ACS Appl Mater Interfaces 2016; 8 (15) 9662-9673
  • 100 Yu Z, Li Q, Wang J. et al. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett 2020; 15 (01) 115
  • 101 Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 2013; 339 (6124): 1213-1216
  • 102 Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163 (03) 560-569
  • 103 Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 2014; 21 (06) 1-6
  • 104 Sawai J, Kojima H, Igarashi H. et al. Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 2000; 16: 187-194
  • 105 Bhattacharya P, Dey A, Neogi S. An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J Mater Chem B 2021; 9 (26) 5329-5339
  • 106 Hayat S, Muzammil S, Rasool MH. et al. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol 2018; 62 (04) 211-220
  • 107 Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi 2014; 22 (01) 64-75
  • 108 Nakamura Y, Okita K, Kudo D. et al. Magnesium hydroxide nanoparticles kill exponentially growing and persister Escherichia coli cells by causing physical damage. Nanomaterials (Basel) 2021; 11 (06) 1584
  • 109 Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 2005; 99 (05) 986-993
  • 110 Wang S, Zhao X, Hsu Y. et al. Surface modification of titanium implants with Mg-containing coatings to promote osseointegration. Acta Biomater 2023; 169: 19-44
  • 111 Parizi MK, Doll K, Rahim MI, Mikolai C, Winkel A, Stiesch M. Antibacterial and cytocompatible: Combining silver nitrate with strontium acetate increases the therapeutic window. Int J Mol Sci 2022; 23 (15) 8058
  • 112 Wang H, Xiong C, Yu Z, Zhang J, Huang Y, Zhou X. Research progress on antibacterial coatings for preventing implant-related infection in fractures: a literature review. Coatings 2022; 12: 1921