RSS-Feed abonnieren

DOI: 10.1055/s-0045-1806812
Galvanic vestibular stimulation to rehabilitate postural instability in Parkinson's disease
Support The authors declare that the present work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Pr#x00F3;-Reitoria de Pesquisa da Universidade Federal de Minas Gerais (PRPQ/UFMG).
Abstract
Background Galvanic vestibular stimulation (GVS) is a non-invasive technique employed to rehabilitate balance by delivering low-intensity, short-duration electrical stimulation to the mastoid bones, effectively activating the vestibulospinal tract.
Objective To evaluate the effects of GVS on balance in patients with Parkinson's disease (PD) and postural instability.
Methods In this clinical study, 25 PD patients with postural instability in the ON phase (best effect of dopaminergic medication) underwent GVS. Balance was assessed using the Berg Balance Scale (BBS), the Timed Up and Go (TUG) test, and posturography on a force platform. Electrical current intensity was progressively increased between the mastoids, starting at 1.0 mA and reaching 3.5 mA by the 6th session, with this level maintained until the 8th session. Stimulation duration began at 9 minutes in the 1st session, increased to 30 minutes by the 3rd session, and was sustained through the 8th session.
Results A blinded comparison of pre- and post-GVS evaluations demonstrated significant improvements in BBS (p = 0.00001) and TUG (p = 0.00003) scores. Posturography showed an increase in the stability limit area (p = 0.026) and the general balance index (p = 0.001).
Conclusion In the therapeutic management of postural instability in PD, GVS emerges as a promising complementary strategy for enhancing balance. Further research is needed to determine whether these improvements persist after GVS cessation.
Registration of Clinical Trial: https://ensaiosclinicos.gov.br/rg/RBR-22j8728.
Keywords
Parkinson Disease - Neurodegenerative Diseases - Postural Balance - Electric Stimulation - RehabilitationAuthors' Contributions
APBAP, DUG: conceptualization, data curation, and writing – original draft; ; LL, DUG: formal analysis and project administration; APBAP, LL, PPC, MCT, DUG: methodology, visualization, and writing – review & editing; LL, PPC, MCT, DUG: resources; JCB, MLD: investigation; APBAP, LL, PPC, MCT, JCB, MLD, DUG: validation; DUG: funding acquisition.
Data Availability Statement
The contents underlying the research text are included in the manuscript.
Editor-in-Chief: Hélio A. G. Teive.
Associate Editor: Renato Puppi Munhoz.
Publikationsverlauf
Eingereicht: 03. Juli 2024
Angenommen: 27. Dezember 2024
Artikel online veröffentlicht:
22. April 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
Anna Paula Batista de Ávila Pires, Ludimila Labanca, Paulo Pereira Christo, Maurício Campelo Tavares, Jordana Carvalhais Barroso, Maria Luiza Diniz, Denise Utsch Gonçalves. Galvanic vestibular stimulation to rehabilitate postural instability in Parkinson's disease. Arq Neuropsiquiatr 2025; 83: s00451806812.
DOI: 10.1055/s-0045-1806812
-
References
- 1 Boonstra TA, van der Kooij H, Munneke M, Bloem BR. Gait disorders and balance disturbances in Parkinson's disease: clinical update and pathophysiology. Curr Opin Neurol 2008; 21 (04) 461-471
- 2 Pastor MA, Day BL, Marsden CD. Vestibular induced postural responses in Parkinson's disease. Brain 1993; 116 (Pt 5): 1177-1190
- 3 Inagaki HK, Chen S, Ridder MC. et al. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 2022; 185 (06) 1065-1081.e23
- 4 Müller MLTM, Albin RL, Kotagal V. et al. Thalamic cholinergic innervation and postural sensory integration function in Parkinson's disease. Brain 2013; 136 (Pt 11): 3282-3289
- 5 Bohnen NI, Müller MLTM, Koeppe RA. et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009; 73 (20) 1670-1676
- 6 Wardman DL, Taylor JL, Fitzpatrick RC. Effects of galvanic vestibular stimulation on human posture and perception while standing. J Physiol 2003; 551 (Pt 3): 1033-1042
- 7 Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M. Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 2018; 265 (Suppl. 01) 57-62
- 8 Mahmud M, Hadi Z, Prendergast M. et al. The effect of galvanic vestibular stimulation on postural balance in Parkinson's disease: A systematic review and meta-analysis. J Neurol Sci 2022; 442: 120414
- 9 Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 2019; 121 (06) 2237-2255
- 10 Wuehr M, Decker J, Schniepp R. Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 2017; 264 (Suppl. 01) 81-86
- 11 Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol 2004; 96 (06) 2301-2316
- 12 Kataoka H, Okada Y, Kiriyama T. et al. Effect of galvanic vestibular stimulation on axial symptoms in Parkinson's disease. J Cent Nerv Syst Dis 2022; 14: 11 795735221081599
- 13 Pan W, Soma R, Kwak S, Yamamoto Y. Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol 2008; 255 (11) 1657-1661
- 14 Goldberg JM, Smith CE, Fernández C. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 1984; 51 (06) 1236-1256
- 15 Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 2000; 130 (03) 277-297
- 16 Fujimoto C, Egami N, Kawahara T. et al. Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 2018; 9: 900
- 17 Carmona S, Ferrero A, Pianetti G, Escolá N, Arteaga MV, Frankel L. Galvanic vestibular stimulation improves the results of vestibular rehabilitation. Ann N Y Acad Sci 2011; 1233 (01) E1-E7
- 18 Okada Y, Kita Y, Nakamura J. et al. Galvanic vestibular stimulation may improve anterior bending posture in Parkinson's disease. Neuroreport 2015; 26 (07) 405-410
- 19 Khoshnam M, Häner DMC, Kuatsjah E, Zhang X, Menon C. Effects of galvanic vestibular stimulation on upper and lower extremities motor symptoms in Parkinson's disease. Front Neurosci 2018; 12: 633
- 20 Pal S, Rosengren SM, Colebatch JG. Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson's disease. J Vestib Res 2009; 19 (3-4): 137-142
- 21 Kataoka H, Okada Y, Kiriyama T. et al. Can postural instability respond to galvanic vestibular stimulation in patients with Parkinson's disease?. J Mov Disord 2016; 9 (01) 40-43
- 22 Cai J, Lee S, Ba F. et al. Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson's disease: fMRI effects of different stimuli. Front Neurosci 2018; 12: 101
- 23 Liu A, Bi H, Li Y. et al. Galvanic vestibular stimulation improves subnetwork interactions in Parkinson's disease. J Healthc Eng 2021; 2021: 6632394
- 24 Pasquier F, Denise P, Gauthier A, Bessot N, Quarck G. Impact of galvanic vestibular stimulation on anxiety level in young adults. Front Syst Neurosci 2019; 13: 14
- 25 Dilda V, MacDougall HG, Curthoys IS, Moore ST. Effects of Galvanic vestibular stimulation on cognitive function. Exp Brain Res 2012; 216 (02) 275-285
- 26 Wilkinson D, Nicholls S, Pattenden C, Kilduff P, Milberg W. Galvanic vestibular stimulation speeds visual memory recall. Exp Brain Res 2008; 189 (02) 243-248
- 27 Pires APBA, Silva TR, Torres MS, Diniz ML, Tavares MC, Gonçalves DU. Galvanic vestibular stimulation and its applications: a systematic review. Braz J Otorhinolaryngol 2022; 88 (Suppl 3, Suppl 3) S202-S211
- 28 Samoudi G, Jivegård M, Mulavara AP, Bergquist F. Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson's disease. Brain Stimul 2015; 8 (03) 474-480
- 29 Tran S, Shafiee M, Jones CB. et al. Subthreshold stochastic vestibular stimulation induces complex multi-planar effects during standing in Parkinson's disease. Brain Stimul 2018; 11 (05) 1180-1182
- 30 Goetz CG, Tilley BC, Shaftman SR. et al; Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008; 23 (15) 2129-2170
- 31 Munhoz RP, Li JY, Kurtinecz M. et al. Evaluation of the pull test technique in assessing postural instability in Parkinson's disease. Neurology 2004; 62 (01) 125-127
- 32 Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed “Up & Go” test in people with Parkinson disease. Phys Ther 2001; 81 (02) 810-818
- 33 Scalzo PL, Nova IC, Perracini MR. et al. Validation of the Brazilian version of the Berg balance scale for patients with Parkinson's disease. Arq Neuropsiquiatr 2009; 67 (3B, 3b) 831-835 . Doi: X2009000500010
- 34 Faraldo-García A, Santos-Pérez S, Crujeiras R, Soto-Varela A. Postural changes associated with ageing on the sensory organization test and the limits of stability in healthy subjects. Auris Nasus Larynx 2016; 43 (02) 149-154
- 35 Nishino LK, Rocha GD, Souza TSA, Ribeiro FAQ, Cóser PL. Protocol for static posturography with dynamic tests in individuals without vestibular complaints using the Horus system. CoDAS 2021; 33 (03) e20190270
- 36 Oda DTM, Ganança CF. Computerized dynamic posturography in the assessment of body balance in individuals with vestibular dysfunction. Audiol Commun Res 2015; 20 (02) 89-95
- 37 Balter SGT, Stokroos RJ, Eterman RMA, Paredis SAB, Orbons J, Kingma H. Habituation to galvanic vestibular stimulation. Acta Otolaryngol 2004; 124 (08) 941-945
- 38 MacDougall HG, Brizuela AE, Burgess AM, Curthoys IS. Between-subject variability and within-subject reliability of the human eye-movement response to bilateral galvanic (DC) vestibular stimulation. Exp Brain Res 2002; 144 (01) 69-78