Semin Musculoskelet Radiol 2025; 29(03): 366-376
DOI: 10.1055/s-0045-1805077
Review Article

Imaging Findings in Acute Ankle Sprain and Syndesmosis Injury

1   Department of Musculoskeletal Centre X-Ray, Leeds Teaching Hospitals Trust, Chapel Allerton Hospital, Leeds, United Kingdom
,
Philip Robinson
1   Department of Musculoskeletal Centre X-Ray, Leeds Teaching Hospitals Trust, Chapel Allerton Hospital, Leeds, United Kingdom
2   NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom
› Institutsangaben

Funding Disclosure Philip Robinson is supported in part by the National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre (BRC) (NIHR203331). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Abstract

Acute ankle sprain including distal tibiofibular syndesmosis injury is the most common lower limb sports injury. In the athletic population, imaging with magnetic resonance imaging plays an important role in the grading of acute ankle sprain but crucially also in the detection of associated injuries, such as bone contusion, osteochondral lesions, fracture, and tendon injury. Accurate diagnosis in the acute phase of injury facilitates surgical decision making, appropriate rehabilitation, and prediction of return-to-play time. This review article examines the medial ligament complex, the lateral ligament complex, and the syndesmosis in detail. It summarizes the normal ligamentous anatomy, mechanisms of injury, and provides imaging examples to illustrate the spectrum of findings in acute ankle sprains.

Supplementary Material



Publikationsverlauf

Artikel online veröffentlicht:
20. Mai 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 van Rijn RM, van Os AG, Bernsen RMD, Luijsterburg PA, Koes BW, Bierma-Zeinstra SM. What is the clinical course of acute ankle sprains? A systematic literature review. Am J Med 2008; 121 (04) 324-331.e6
  • 2 Colò G, Bignotti B, Costa G, Signori A, Tagliafico AS. Ultrasound or MRI in the evaluation of anterior talofibular ligament (ATFL) injuries: systematic review and meta-analysis. Diagnostics (Basel) 2023; 13 (14) 2324
  • 3 Ismail EE, Al Saffar RA, Motawei K. et al. Defining the components of the deltoid ligament (DL): a cadaveric study. Cureus 2022; 14 (03) e23051
  • 4 Gregersen MG, Fagerhaug Dalen A, Nilsen F, Molund M. The anatomy and function of the individual bands of the deltoid ligament-and implications for stability assessment of SER ankle fractures. Foot Ankle Orthop 2022; 7 (02) 24 730114221104078
  • 5 Crim J, Longenecker LG. MRI and surgical findings in deltoid ligament tears. AJR Am J Roentgenol 2015; 204 (01) W63-W69
  • 6 Szaro P, Ghali Gataa K, Polaczek M, Ciszek B. The double fascicular variations of the anterior talofibular ligament and the calcaneofibular ligament correlate with interconnections between lateral ankle structures revealed on magnetic resonance imaging. Sci Rep 2020; 10 (01) 20801
  • 7 Edama M, Kageyama I, Kikumoto T. et al. Morphological features of the anterior talofibular ligament by the number of fiber bundles. Ann Anat 2018; 216: 69-74
  • 8 Bahr R, Pena F, Shine J, Lew WD, Engebretsen L. Ligament force and joint motion in the intact ankle: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 1998; 6 (02) 115-121
  • 9 Inchai C, Vaseenon T, Tanaka Y, Mahakkanukrauh P. The specific anatomical morphology of lateral ankle ligament: qualitative and quantitative cadaveric based study. Orthop Surg 2023; 15 (10) 2683-2688
  • 10 Ebraheim NA, Taser F, Shafiq Q, Yeasting RA. Anatomical evaluation and clinical importance of the tibiofibular syndesmosis ligaments. Surg Radiol Anat 2006; 28 (02) 142-149
  • 11 McCollum GA, van den Bekerom MPJ, Kerkhoffs GMMJ, Calder JD, van Dijk CN. Syndesmosis and deltoid ligament injuries in the athlete. Knee Surg Sports Traumatol Arthrosc 2013; 21 (06) 1328-1337
  • 12 Dalmau-Pastor M, Malagelada F, Kerkhoffs GMMJ, Karlsson J, Manzanares MC, Vega J. The anterior tibiofibular ligament has a constant distal fascicle that contacts the anterolateral part of the talus. Knee Surg Sports Traumatol Arthrosc 2020; 28 (01) 48-54
  • 13 Warner SJ, Garner MR, Schottel PC, Hinds RM, Loftus ML, Lorich DG. Analysis of PITFL injuries in rotationally unstable ankle fractures. Foot Ankle Int 2015; 36 (04) 377-382
  • 14 Chang AL, Mandell JC. Syndesmotic ligaments of the ankle: anatomy, multimodality imaging, and patterns of injury. Curr Probl Diagn Radiol 2020; 49 (06) 452-459
  • 15 Hermans JJ, Wentink N, Beumer A. et al. Correlation between radiological assessment of acute ankle fractures and syndesmotic injury on MRI. Skeletal Radiol 2012; 41 (07) 787-801
  • 16 Park JW, Lee SJ, Choo HJ, Kim SK, Gwak HC, Lee SM. Ultrasonography of the ankle joint. Ultrasonography 2017; 36 (04) 321-335
  • 17 Roemer FW, Jomaah N, Niu J. et al. Ligamentous injuries and the risk of associated tissue damage in acute ankle sprains in athletes: a cross-sectional MRI study. Am J Sports Med 2014; 42 (07) 1549-1557
  • 18 Khor YP, Tan KJ. The anatomic pattern of injuries in acute inversion ankle sprains: a magnetic resonance imaging study. Orthop J Sports Med 2013; 1 (07) 2325967113517078
  • 19 Norkus SA, Floyd RT. The anatomy and mechanisms of syndesmotic ankle sprains. J Athl Train 2001; 36 (01) 68-73
  • 20 Robinson P. Impingement syndromes of the ankle. Eur Radiol 2007; 17 (12) 3056-3065
  • 21 Hayashi D, Roemer FW, D'Hooghe P, Guermazi A. Posterior ankle impingement in athletes: pathogenesis, imaging features and differential diagnoses. Eur J Radiol 2015; 84 (11) 2231-2241
  • 22 Park HJ, Lee SY, Park NH. et al. Usefulness of the oblique coronal plane in ankle MRI of the calcaneofibular ligament. Clin Radiol 2015; 70 (04) 416-423
  • 23 Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the ankle: advanced high-resolution visualization of ligaments, tendons, and articular cartilage. Foot Ankle Clin 2023; 28 (03) 529-550
  • 24 Bajaj S, Chhabra A, Taneja AK. 3D isotropic MRI of ankle: review of literature with comparison to 2D MRI. Skeletal Radiol 2024; 53 (05) 825-846
  • 25 Akram R, Duarte Silva F, de Silva LNM, Gupta A, Basha A, Chhabra A. Three-dimensional MRI of foot and ankle: current perspectives and advantages over 2D MRI. Semin Roentgenol 2024; 59 (04) 447-466
  • 26 Williams GN, Jones MH, Amendola A. Syndesmotic ankle sprains in athletes. Am J Sports Med 2007; 35 (07) 1197-1207
  • 27 Cerezal A, Ocampo R, Llopis E, Cerezal L. Ankle instability update. Semin Musculoskelet Radiol 2023; 27 (03) 231-244
  • 28 Galli MM, Protzman NM, Mandelker EM, Malhotra AD, Schwartz E, Brigido SA. Examining the relation of osteochondral lesions of the talus to ligamentous and lateral ankle tendinous pathologic features: a comprehensive MRI review in an asymptomatic lateral ankle population. J Foot Ankle Surg 2014; 53 (04) 429-433
  • 29 Saxena A, Luhadiya A, Ewen B, Goumas C. Magnetic resonance imaging and incidental findings of lateral ankle pathologic features with asymptomatic ankles. J Foot Ankle Surg 2011; 50 (04) 413-415
  • 30. Hodler J, Kubik-Huch RA, von Schulthess GK. eds. Musculoskeletal Diseases 2021–2024: Diagnostic Imaging. Cham, Switzerland: Springer; 2021
  • 31 Ziai P, Benca E, Wenzel F. et al. Peroneal tendinosis as a predisposing factor for the acute lateral ankle sprain in runners. Knee Surg Sports Traumatol Arthrosc 2016; 24 (04) 1175-1179
  • 32 Jungmann PM, Lange T, Wenning M, Baumann FA, Bamberg F, Jung M. Ankle sprains in athletes: current epidemiological, clinical and imaging trends. Open Access J Sports Med 2023; 14: 29-46
  • 33 Halabchi F, Hassabi M. Acute ankle sprain in athletes: clinical aspects and algorithmic approach. World J Orthop 2020; 11 (12) 534-558