Subscribe to RSS

DOI: 10.1055/s-0045-1804922
Association among blood pressure, antihypertensive drugs, and amyotrophic lateral sclerosis

Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease. The impacts of antihypertensive drugs and blood pressure (BP) on ALS are currently debatable.
Objective To evaluate the causal relationship involving antihypertensive drugs, BP, and ALS through a Mendelian randomization (MR) analysis.
Methods The causal relationship between BP and ALS was evaluated by a bidirectional two-sample MR analysis. Then, a sensitivity analysis was performed using a secondary BP genome-wide association study. The drug-target MR was employed to evaluate the impact of antihypertensive drugs on ALS. Furthermore, we used cis-expression quantitative trait loci (cis-eQTLs) data from brain tissue and blood to validate the positive results by a summary-based MR method.
Results We found that an increment in systolic BP (SBP) could elevate the risk of ALS (inverse-variance weighted [IVW] odds ratio [OR] = 1.003; 95% confidence interval [95%CI]: 1.001–1.006; per 10-mmHg increment) and ALS might be protected by angiotensin-converting enzyme inhibitors (ACEIs; OR = 0.970; 95%CI: 0.956–0.984; p = 1.96 × 10−5; per 10-mmHg decrement). A causal relationship was not observed between diastolic BP and other antihypertensive drugs in ALS.
Conclusion In the present study, genetic support for elevated SBP serves as a risk factor for ALS. Besides, ACEIs hold promise as a candidate for ALS.
Keywords
Blood Pressure - Antihypertensive Agents - Mendelian Randomization Analysis - Amyotrophic Lateral SclerosisEthics Approval
All data used in the present study was from publicly available summary-level data from GWAS and expression quantitative trait loci (eQTLs) studies and the ethical approval included can be found in the original articles.
Data Availability Statement
The summary statistics used in the current study are available from the corresponding author upon reasonable request.
Authors' Contributions
ZGL, FG: conceptualization; ZGL, YL, JKZ: methodology; ZGL, WD: software; ZGL, FG: validation; YNJ: formal analysis, investigation; ZGL: resources; FFZ: data curation; ZGL: writing—original draft preparation; ZGL, YL: writing—review and editing; ZGL: visualization; LXG: supervision, project administration. All authors have read and agreed to the published version of the manuscript.
Editor-in-Chief: Hélio A. G. Teive.
Associate Editor: Paulo José Lorenzoni.
Publication History
Received: 29 March 2024
Accepted: 12 November 2024
Article published online:
13 May 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
Zhiguang Li, Yan Li, Jiankai Zhao, Feifei Zhang, Wei Dang, Yanan Jia, Fei Guo, Lixin Guo. Association among blood pressure, antihypertensive drugs, and amyotrophic lateral sclerosis. Arq Neuropsiquiatr 2025; 83: s00451804922.
DOI: 10.1055/s-0045-1804922
-
References
- 1 Feldman EL, Goutman SA, Petri S. et al. Amyotrophic lateral sclerosis. Lancet 2022; 400 (10360): 1363-1380 10.1016/S0140-6736(22)01272-7
- 2 Collaborators GBDRF. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392 (10159): 1923-1994 10.1016/S0140-6736(18)32225-6
- 3 Glasmacher SA, Kearns PKA, Larraz J. et al; CARE-MND Consortium. Prevalence of multimorbidity and its impact on survival in people with motor neuron disease. Eur J Neurol 2021; 28 (08) 2756-2765 10.1111/ene.14940
- 4 Xu K, Ji H, Hu N. Cardiovascular comorbidities in amyotrophic lateral sclerosis: A systematic review. J Clin Neurosci 2022; 96: 43-49 10.1016/j.jocn.2021.12.021
- 5 Moreau C, Brunaud-Danel V, Dallongeville J. et al. Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2012; 13 (02) 194-201 10.3109/17482968.2011.610110
- 6 Hollinger SK, Okosun IS, Mitchell CS. Antecedent disease and amyotrophic lateral sclerosis: What is protecting whom?. Front Neurol 2016; 7: 47 10.3389/fneur.2016.00047
- 7 Lian L, Liu M, Cui L. et al. Environmental risk factors and amyotrophic lateral sclerosis (ALS): A case-control study of ALS in China. J Clin Neurosci 2019; 66: 12-18 10.1016/j.jocn.2019.05.036
- 8 Lin FC, Tsai CP, Kuang-Wu Lee J, Wu MT, Tzu-Chi Lee C. Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population-based case-control study. JAMA Neurol 2015; 72 (01) 40-48 10.1001/jamaneurol.2014.3367
- 9 Abdel Magid HS, Topol B, McGuire V, Hinman JA, Kasarskis EJ, Nelson LM. Cardiovascular diseases, medications, and ALS: a population-based case-control study. Neuroepidemiology 2022; 56 (06) 423-432 10.1159/000526982
- 10 Pfeiffer RM, Mayer B, Kuncl RW. et al. Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of medicare prescription drugs. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21 (3-4): 235-245 10.1080/21678421.2019.1682613
- 11 Hu N, Ji H. Medications on hypertension, hyperlipidemia, diabetes, and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2022; 43 (09) 5189-5199 10.1007/s10072-022-06131-7
- 12 Franchi C, Bianchi E, Pupillo E. et al. Angiotensin-converting enzyme inhibitors and motor neuron disease: An unconfirmed association. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17 (5-6): 385-388 10.3109/21678421.2016.1143515
- 13 Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018; 362: k601 10.1136/bmj.k601
- 14 Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 2016; 103 (04) 965-978 10.3945/ajcn.115.118216
- 15 Schmidt AF, Finan C, Gordillo-Marañón M. et al. Genetic drug target validation using Mendelian randomisation. Nat Commun 2020; 11 (01) 3255 10.1038/s41467-020-16969-0
- 16 Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev 2018; 4 (04) CD001841 10.1002/14651858.CD001841.pub3
- 17 Skrivankova VW, Richmond RC, Woolf BAR. et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021; 326 (16) 1614-1621 10.1001/jama.2021.18236
- 18 Evangelou E, Warren HR, Mosen-Ansorena D. et al; Million Veteran Program. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 2018; 50 (10) 1412-1425 10.1038/s41588-018-0205-x
- 19 L EB. . MRC IEU UK Biobank GWAS pipeline version 1 2017
- 20 Gill D, Georgakis MK, Koskeridis F. et al. Use of genetic variants related to antihypertensive drugs to inform on efficacy and side effects. Circulation 2019; 140 (04) 270-279 10.1161/CIRCULATIONAHA.118.038814
- 21 Luo S, Schooling CM, Wong ICK, Au Yeung SL. Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: a Mendelian randomisation study. Diabetologia 2020; 63 (11) 2349-2358 10.1007/s00125-020-05243-z
- 22 Chauquet S, Zhu Z, O'Donovan MC, Walters JTR, Wray NR, Shah S. Association of antihypertensive drug target genes with psychiatric disorders: A Mendelian randomization study. JAMA Psychiatry 2021; 78 (06) 623-631 10.1001/jamapsychiatry.2021.0005
- 23 Qi T, Wu Y, Fang H. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat Genet 2022; 54 (09) 1355-1363 10.1038/s41588-022-01154-4
- 24 van Rheenen W, van der Spek RAA, Bakker MK. et al; SLALOM Consortium, PARALS Consortium, SLAGEN Consortium, SLAP Consortium. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 2021; 53 (12) 1636-1648 10.1038/s41588-021-00973-1
- 25 Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol 2016; 45 (06) 1961-1974 10.1093/ije/dyw220
- 26 Mandrioli J, Ferri L, Fasano A. et al. Cardiovascular diseases may play a negative role in the prognosis of amyotrophic lateral sclerosis. Eur J Neurol 2018; 25 (06) 861-868 10.1111/ene.13620
- 27 Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2017; 95 (04) 943-972 10.1002/jnr.23777
- 28 Gouveia F, Camins A, Ettcheto M. et al. Targeting brain Renin-Angiotensin System for the prevention and treatment of Alzheimer's disease: Past, present and future. Ageing Res Rev 2022; 77: 101612 10.1016/j.arr.2022.101612
- 29 Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27 (03) 905-912 10.1016/j.sjbs.2020.01.026
- 30 Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 2020; 27 (10) 1918-1929 10.1111/ene.14393
- 31 Dong YF, Kataoka K, Tokutomi Y. et al. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease. FASEB J 2011; 25 (09) 2911-2920 10.1096/fj.11-182873
- 32 Kunkle BW, Grenier-Boley B, Sims R. et al; Alzheimer Disease Genetics Consortium (ADGC), European Alzheimer's Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 2019; 51 (03) 414-430 10.1038/s41588-019-0358-2
- 33 Ge YJ, Ou YN, Deng YT. et al; International FTD-Genomics Consortium. Prioritization of drug targets for neurodegenerative diseases by integrating genetic and proteomic data from brain and blood. Biol Psychiatry 2023; 93 (09) 770-779 10.1016/j.biopsych.2022.11.002
- 34 Bhat SA, Goel R, Shukla R, Hanif K. Angiotensin receptor blockade modulates NFκB and STAT3 signaling and inhibits glial activation and neuroinflammation better than angiotensin-converting enzyme inhibition. Mol Neurobiol 2016; 53 (10) 6950-6967 10.1007/s12035-015-9584-5
- 35 Asraf K, Torika N, Apte RN, Fleisher-Berkovich S. Microglial Activation Is Modulated by Captopril: in Vitro and in Vivo Studies. Front Cell Neurosci. 2018. ;12:116. Epub 20180501. doi: 10.3389/fncel.2018.00116. PubMed PMID: 29765306; PubMed Central PMCID: PMCPMC5938337.
- 36 Ravati A, Junker V, Kouklei M, Ahlemeyer B, Culmsee C, Krieglstein J. Enalapril and moexipril protect from free radical-induced neuronal damage in vitro and reduce ischemic brain injury in mice and rats. Eur J Pharmacol 1999; 373 (01) 21-33 10.1016/s0014-2999(99)00211-3
- 37 Sengul G, Coskun S, Cakir M, Coban MK, Saruhan F, Hacimuftuoglu A. Neuroprotective effect of ACE inhibitors in glutamate - induced neurotoxicity: rat neuron culture study. Turk Neurosurg 2011; 21 (03) 367-371 10.5137/1019-5149.JTN.4313-11.0
- 38 Michal Freedman D, Kuncl RW, Weinstein SJ, Malila N, Virtamo J, Albanes D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 (04) 246-251 10.3109/21678421.2012.745570