RSS-Feed abonnieren

DOI: 10.1055/s-0044-1800916
Capsule Endoscopy Technology: A New Era in Digestive Tract Examination

Abstract
Capsule endoscopy (CE) represents an important groundbreaking advancement in gastrointestinal (GI) examinations, distinguished by its noninvasive, painless, and convenient nature, and has swiftly established itself as a crucial tool for diagnosing and treating digestive diseases. With the development of artificial intelligence (AI) and machine learning (ML), as AI and ML progress, the capabilities of CE have expanded beyond mere imaging within the GI tract; it is progressively evolving to encompass procedures such as biopsies and targeted drug delivery. This review systematically searched five reputable repositories—Scopus, PubMed, IEEE Xplore, ACM Digital Library, and ScienceDirect—for all original publications on CE from 2001 to 2024. The review provides an overview of the current status and identified limitations of CE, highlighting the significant role that AI and ML are projected to play in its future development.
Keywords
capsule endoscopy - endurance - image transmission - advancements in artificial intelligence - limitationAuthors' Contribution
K.-m.H. and H.-b.C. initiated the study design, K.-m.H.Y.D. and H.-b.Q. are responsible for collecting original articles and article writing, while H.-b.C. and L.-h.W. are responsible for reviewing article quality and English calibration.
Source of Support
None.
* These authors have contributed equally to this work and share first authorship.
Publikationsverlauf
Artikel online veröffentlicht:
30. Dezember 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Fornaroli F, Gaiani F, Vincenzi F. et al. Applications of wireless capsule endoscopy in pediatric age: an update. Acta Biomed 2018; 89 (9-S, 9-s): 40-46
- 2 Lewis BS, Swain P. Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: results of a pilot study. Gastrointest Endosc 2002; 56 (03) 349-353
- 3 Pal P, Banerjee R, Gupta R, Reddy PM, Reddy DN, Tandan M. Capsule endoscopy in inflammatory bowel disease: a systematic review. J Dig Endosc 2023; 14: 149-174
- 4 Meher D, Gogoi M, Bharali P, Singh SP, Anirvan P. Artificial intelligence in small bowel endoscopy: current perspectives and future directions. J Dig Endosc 2020;11(06):
- 5 Haslach-Häfner M, Mönkemüller K. Reading capsule endoscopy: why not AI alone?. Endosc Int Open 2023; 11 (12) E1175-E1176
- 6 Choi CW, Lee SJ, Hong SN. et al. Small bowel capsule endoscopy within 6 hours following bowel preparation with polyethylene glycol shows improved small bowel visibility. Diagnostics (Basel) 2023; 13 (03) 469
- 7 Hansel SL, Murray JA, Alexander JA. et al. Evaluating a combined bowel preparation for small-bowel capsule endoscopy: a prospective randomized-controlled study. Gastroenterol Rep (Oxf) 2019; 8 (01) 31-35
- 8 Estevinho MM, Sarmento Costa M, Franco R. et al. Preparation Regimens to Improve Capsule Endoscopy visualization and diagnostic yield (PrepRICE); a multicentric randomized trial. Gastrointest Endosc 2024; S0016-5107 (24)03358-3
- 9 Hookey L, Louw J, Wiepjes M. et al. Lack of benefit of active preparation compared with a clear fluid-only diet in small-bowel visualization for video capsule endoscopy: results of a randomized, blinded, controlled trial. Gastrointest Endosc 2017; 85 (01) 187-193
- 10 Mascarenhas Saraiva MJ, Afonso J, Ribeiro T. et al. AI-driven colon cleansing evaluation in capsule endoscopy: a deep learning approach. Diagnostics (Basel) 2023; 13 (23) 3494
- 11 Ju J, Oh HS, Lee YJ. et al. Clean mucosal area detection of gastroenterologists versus artificial intelligence in small bowel capsule endoscopy. Medicine (Baltimore) 2023; 102 (06) e32883
- 12 Ribeiro T, Mascarenhas Saraiva MJ, Afonso J. et al. Design of a convolutional neural network as a deep learning tool for the automatic classification of small-bowel cleansing in capsule endoscopy. Medicina (Kaunas) 2023; 59 (04) 810
- 13 Ou G, Shahidi N, Galorport C, Takach O, Lee T, Enns R. Effect of longer battery life on small bowel capsule endoscopy. World J Gastroenterol 2015; 21 (09) 2677-2682
- 14 Koulaouzidis A, Rondonotti E, Karargyris A. Small-bowel capsule endoscopy: a ten-point contemporary review. World J Gastroenterol 2013; 19 (24) 3726-3746
- 15 Robertson KD, Singh R. Capsule Endoscopy. In: StatPearls. Treasure Island (FL):: StatPearls Publishing LLC.;; 2024
- 16 Mostafalu P, Sonkusale S. Flexible and transparent gastric battery: energy harvesting from gastric acid for endoscopy application. Biosens Bioelectron 2014; 54: 292-296
- 17 Nadeau P, El-Damak D, Glettig D. et al. Prolonged energy harvesting for ingestible devices. Nat Biomed Eng 2017; 1: 1
- 18 Ilic IK, Galli V, Lamanna L. et al. An edible rechargeable battery. Adv Mater 2023; 35 (20) e2211400
- 19 Xu M, Liu Y, Yang K. et al. Minimally invasive power sources for implantable electronics. Exploration (Beijing) 2023; 4 (01) 20220106
- 20 Kim HM, Yang S, Kim J. et al. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest Endosc 2010; 72 (02) 381-387
- 21 Carpi F, Pappone C. Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system. IEEE Trans Biomed Eng 2009; 56 (05) 1482-1490
- 22 Le VH, Hernando LR, Lee C. et al. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope. Proc Inst Mech Eng H 2015; 229 (03) 255-263
- 23 Yim S, Gultepe E, Gracias DH, Sitti M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng 2014; 61 (02) 513-521
- 24 Hoang MC, Park JO, Kim J. Battery-free tattooing mechanism-based functional active capsule endoscopy. Micromachines (Basel) 2022; 13 (12) 2111
- 25 Daniel P, Rana S. Magnetically assisted capsule endoscopy for endoscopic examination of esophagus and stomach—beginning of the end of flexible esophagogastroscopy!. J Dig Endosc 2020; 11: 228-231
- 26 Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomed Pharmacother 2006; 60 (08) 370-374
- 27 Slawinski PR, Obstein KL, Valdastri P. Capsule endoscopy of the future: what's on the horizon?. World J Gastroenterol 2015; 21 (37) 10528-10541
- 28 Shamsudhin N, Zverev VI, Keller H. et al. Magnetically guided capsule endoscopy. Med Phys 2017; 44 (08) e91-e111
- 29 Wang X, Hu X, Xu Y. et al. A systematic review on diagnosis and treatment of gastrointestinal diseases by magnetically controlled capsule endoscopy and artificial intelligence. Therap Adv Gastroenterol 2023; 16: 17 562848231206991
- 30 Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol 2015; 12 (03) 172-186
- 31 Mackiewicz M, Berens J, Fisher M. Wireless capsule endoscopy color video segmentation. IEEE Trans Med Imaging 2008; 27 (12) 1769-1781
- 32 Wang C, Luo Z, Liu X, Bai J, Liao G. Organic boundary location based on color-texture of visual perception in wireless capsule endoscopy video. J Healthc Eng 2018; 2018: 3090341
- 33 Cao Q, Deng R, Pan Y. et al. Robotic wireless capsule endoscopy: recent advances and upcoming technologies. Nat Commun 2024; 15 (01) 4597
- 34 Iakovidis DK, Dimas G, Karargyris A, Bianchi F, Ciuti G, Koulaouzidis A. Deep endoscopic visual measurements. IEEE J Biomed Health Inform 2019; 23 (06) 2211-2219
- 35 Nogales Ó, García-Lledó J, Luján M. et al. Therapeutic impact of colon capsule endoscopy with PillCam™ COLON 2 after incomplete standard colonoscopy: a Spanish multicenter study. Rev Esp Enferm Dig 2017; 109 (05) 322-327
- 36 Takizawa K, Hamaguchi K. Low-complexity video encoding method for wireless image transmission in capsule endoscope. Annu Int Conf IEEE Eng Med Biol Soc 2010; 2010: 3479-3482
- 37 Ciuti G, Menciassi A, Dario P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 2011; 4: 59-72
- 38 Liu G, Yan G, Zhao S, Kuang S. A complexity-efficient and one-pass image compression algorithm for wireless capsule endoscopy. Technol Health Care 2015; 23 (Suppl. 02) S239-S247
- 39 Chen X, Zhang X, Zhang L. et al. A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Trans Biomed Circuits Syst 2009; 3 (01) 11-22
- 40 Zhang N, Wu X. Lossless compression of color mosaic images. IEEE Trans Image Process 2006; 15 (06) 1379-1388
- 41 Chung KL, Chen HY, Hsieh TL, Chen YB. Compression for Bayer CFA images: review and performance comparison. Sensors (Basel) 2022; 22 (21) 8362
- 42 Chung KH, Chan YH. A lossless compression scheme for Bayer color filter array images. IEEE Trans Image Process 2008; 17 (02) 134-144
- 43 Hasan K, Ebrahim MP, Xu H, Yuce MR. Analysis of spectral estimation algorithms for accurate heart rate and respiration rate estimation using an ultra-wideband radar sensor. IEEE Rev Biomed Eng 2024; 17: 297-309
- 44 Hany U, Akter L. Accuracy of UWB path loss-based localization of wireless capsule endoscopy. J Healthc Eng 2023; 2023: 3156013
- 45 Hosoe N, Watanabe K, Miyazaki T. et al. Evaluation of performance of the Omni mode for detecting video capsule endoscopy images: a multicenter randomized controlled trial. Endosc Int Open 2016; 4 (08) E878-E882
- 46 Kyriakos N, Karagiannis S, Galanis P. et al. Evaluation of four time-saving methods of reading capsule endoscopy videos. Eur J Gastroenterol Hepatol 2012; 24 (11) 1276-1280
- 47 Hwang Y, Lee HH, Park C. et al. Improved classification and localization approach to small bowel capsule endoscopy using convolutional neural network. Dig Endosc 2021; 33 (04) 598-607
- 48 Otani K, Nakada A, Kurose Y. et al. Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 2020; 52 (09) 786-791
- 49 Aoki T, Yamada A, Aoyama K. et al. Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Dig Endosc 2020; 32 (04) 585-591
- 50 Yang YJ, Cho BJ, Jang HJ. Clinical usefulness of AI-assisted small bowel localization and lesion detection in capsule endoscopy. Endoscopy 2024; 56 (02) S121
- 51 Gatenby P, Bhattacharjee S, Wall C, Caygill C, Watson A. Risk stratification for malignant progression in Barrett's esophagus: gender, age, duration and year of surveillance. World J Gastroenterol 2016; 22 (48) 10592-10600
- 52 de Groof AJ, Struyvenberg MR, van der Putten J. et al. Deep-learning system detects neoplasia in patients with Barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology 2020; 158 (04) 915-929.e4
- 53 Luo H, Xu G, Li C. et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 2019; 20 (12) 1645-1654
- 54 Cho BJ, Bang CS, Park SW. et al. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy 2019; 51 (12) 1121-1129
- 55 Ueyama H, Kato Y, Akazawa Y. et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. J Gastroenterol Hepatol 2021; 36 (02) 482-489
- 56 Cardoso P, Saraiva MM, Afonso J. et al. Artificial intelligence and device-assisted enteroscopy: automatic detection of enteric protruding lesions using a convolutional neural network. Clin Transl Gastroenterol 2022; 13 (08) e00514
- 57 Lewis BS, Eisen GM, Friedman S. A pooled analysis to evaluate results of capsule endoscopy trials. Endoscopy 2005; 37 (10) 960-965
- 58 Aoki T, Yamada A, Kato Y. et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointest Endosc 2021; 93 (01) 165-173.e1
- 59 Leenhardt R, Li C, Le Mouel JP. et al. CAD-CAP: a 25,000-image database serving the development of artificial intelligence for capsule endoscopy. Endosc Int Open 2020; 8 (03) E415-E420
- 60 Vezakis IA, Toumpaniaris P, Polydorou AA, Koutsouris D. A novel real-time automatic angioectasia detection method in wireless capsule endoscopy video feed. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 4072-4075
- 61 Tsuboi A, Oka S, Aoyama K. et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig Endosc 2020; 32 (03) 382-390
- 62 Aoki T, Yamada A, Kato Y. et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 2020; 35 (07) 1196-1200
- 63 Arieira C, Monteiro S, Dias de Castro F. et al. Capsule endoscopy: is the software TOP 100 a reliable tool in suspected small bowel bleeding?. Dig Liver Dis 2019; 51 (12) 1661-1664
- 64 Han S, Fahed J, Cave DR. Suspected blood indicator to identify active gastrointestinal bleeding: a prospective validation. Gastroenterol Res 2018; 11 (02) 106-111
- 65 Pan G, Yan G, Qiu X, Cui J. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J Med Syst 2011; 35 (06) 1477-1484
- 66 Fan S, Xu L, Fan Y, Wei K, Li L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys Med Biol 2018; 63 (16) 165001