Subscribe to RSS
DOI: 10.1055/s-0044-1800852
Technical Errors and Artifacts Causing Mistakes in Musculoskeletal Imaging
Authors

Abstract
Imaging, an essential diagnostic tool found ubiquitously in modern clinical practice, is particularly useful for evaluating musculoskeletal (MSK) pathology. However, technical errors in imaging and imaging artifacts are pitfalls that frequently diminish image quality and may lead to misinterpretation of radiologic studies by radiologists and clinicians. This review describes the causes and imaging appearances of the more common and important MSK imaging technical errors and artifacts in radiography, ultrasound, computed tomography, magnetic resonance imaging, and MSK intervention that may potentially lead to erroneous interpretation. Where applicable, strategies to mitigate the impact of these pitfalls are also discussed.
Keywords
computed tomography artifacts - interventional radiology pitfalls - magnetic resonance imaging artifacts - musculoskeletal imaging pitfalls - ultrasound artifactsPublication History
Article published online:
07 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Low KTA, Peh WCG. Radiography limitations and pitfalls. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer; 2017: 3-32
- 2 Yan YY, Holmes RD, Mallinson PI, Andrews GT, Munk PL, Ouellette HA. Imaging review of hockey-related upper extremity injuries. Semin Musculoskelet Radiol 2022; 26 (01) 3-12
- 3 Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis—what the radiologist should know. AJR Am J Roentgenol 2007; 188 (06) 1540-1552
- 4 Walz-Flannigan AI, Brossoit KJ, Magnuson DJ, Schueler BA. Pictorial review of digital radiography artifacts. Radiographics 2018; 38 (03) 833-846
- 5 Alexander RG, Yazdanie F, Waite S. et al. Visual illusions in radiology: untrue perceptions in medical images and their implications for diagnostic accuracy. Front Neurosci 2021; 15: 629469
- 6 Gimber LH, Taljanovic MS. Ultrasound imaging artifacts. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer; 2017: 33-44
- 7 Feldman MK, Katyal S, Blackwood MS. US artifacts. Radiographics 2009; 29 (04) 1179-1189
- 8 Taljanovic MS, Melville DM, Scalcione LR, Gimber LH, Lorenz EJ, Witte RS. Artifacts in musculoskeletal ultrasonography. Semin Musculoskelet Radiol 2014; 18 (01) 3-11
- 9 Jamadar DA, Robertson BL, Jacobson JA. et al. Musculoskeletal sonography: important imaging pitfalls. AJR Am J Roentgenol 2010; 194 (01) 216-225
- 10 Nilsson A. Artefacts in sonography and Doppler. Eur Radiol 2001; 11 (08) 1308-1315
- 11 Wu WT, Chang KV, Hsu YC, Hsu PC, Ricci V, Özçakar L. Artifacts in musculoskeletal ultrasonography: from physics to clinics. Diagnostics (Basel) 2020; 10 (09) 645
- 12 Smith E, Azzopardi C, Thaker S, Botchu R, Gupta H. Power Doppler in musculoskeletal ultrasound: uses, pitfalls and principles to overcome its shortcomings. J Ultrasound 2021; 24 (02) 151-156
- 13 Rubens DJ, Bhatt S, Nedelka S, Cullinan J. Doppler artifacts and pitfalls. Radiol Clin North Am 2006; 44 (06) 805-835
- 14 Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med 2012; 4 (02) 229-240
- 15 Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol 2014; 43 (05) 567-575
- 16 Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics 2004; 24 (06) 1679-1691
- 17 Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018; 38 (02) 450-461
- 18 Lin XZ, Miao F, Li JY, Dong HP, Shen Y, Chen KM. High-definition CT Gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr 2011; 35 (02) 294-297
- 19 Boas FE, Fleischmann D. Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 2011; 259 (03) 894-902
- 20 Lee MJ, Kim S, Lee SA. et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007; 27 (03) 791-803
- 21 Yadava GK, Pal D, Hsieh J. Reduction of metal artifacts: beam hardening and photon starvation effects. In: Medical Imaging 2014: Physics of Medical Imaging. Vol 9033. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers; 2014: 816-823
- 22 Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012; 199 (5, Suppl): S9-S15
- 23 Kidoh M, Utsunomiya D, Oda S. et al. CT venography after knee replacement surgery: comparison of dual-energy CT-based monochromatic imaging and single-energy metal artifact reduction techniques on a 320-row CT scanner. Acta Radiol Open 2017; 6 (02) 2058460117693463
- 24 Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility. AJR Am J Roentgenol 2014; 203 (04) 788-795
- 25 Andersson KM, Norrman E, Geijer H. et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol 2016; 89 (1063): 20150993
- 26 Jung H. Basic physical principles and clinical applications of computed tomography. Prog Med Phys 2021; 32 (01) 1-17
- 27 Fleischmann D, Boas FE. Computed tomography—old ideas and new technology. Eur Radiol 2011; 21 (03) 510-517
- 28 Miller-Thomas MM, West OC, Cohen AM. Diagnosing traumatic arterial injury in the extremities with CT angiography: pearls and pitfalls. Radiographics 2005; 25 (Suppl. 01) S133-S142
- 29 Buckwalter KA, Lin C, Ford JM. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol 2011; 15 (04) 309-319
- 30 Ho KCT, Saevarsson SK, Ramm H. et al. Computed tomography analysis of knee pose and geometry before and after total knee arthroplasty. J Biomech 2012; 45 (13) 2215-2221
- 31 Demirpolat G, Yüksel M, Kavukçu G, Tuncel D. Carotid CT angiography: comparison of image quality for left versus right arm injections. Diagn Interv Radiol 2011; 17 (03) 195-198
- 32 Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology 2016; 281 (03) 690-707
- 33 Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: what is the role beyond gout?. AJR Am J Roentgenol 2019; 213 (03) 493-505
- 34 Pache G, Krauss B, Strohm P. et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 2010; 256 (02) 617-624
- 35 Yan YY, Ouellette HA, Saththianathan M, Munk PL, Mallinson PI, Sheikh A. The role of a virtual noncalcium dual-energy CT application in the detection of bone marrow edema in peripheral osteomyelitis. Can Assoc Radiol J 2022; 73 (03) 549-556
- 36 Cheong SCW, Yan YY, Sheikh A. et al. Dual-energy CT applications in musculoskeletal disorders. Br J Radiol 2024; 97 (1156): 705-715
- 37 Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013; 269 (02) 525-533
- 38 Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol 2018; 28 (10) 4182-4194
- 39 Carrino JA, Al Muhit A, Zbijewski W. et al. Dedicated cone-beam CT system for extremity imaging. Radiology 2014; 270 (03) 816-824
- 40 Sisniega A, Zbijewski W, Badal A. et al. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med Phys 2013; 40 (05) 051915
- 41 Carrino JA, Ibad H, Lin Y. et al. CT in musculoskeletal imaging: still helpful and for what?. Skeletal Radiol 2024; 53 (09) 1711-1725
- 42 Schafer S, Stayman JW, Zbijewski W, Schmidgunst C, Kleinszig G, Siewerdsen JH. Antiscatter grids in mobile C-arm cone-beam CT: effect on image quality and dose. Med Phys 2012; 39 (01) 153-159
- 43 Zhuo J, Gullapalli RP. AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control. Radiographics 2006; 26 (01) 275-297
- 44 Singh DR, Rumpel H, Chin MSM, Peh WCG. Magnetic resonance imaging artifacts. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer; 2017: 61-81
- 45 Morelli JN, Runge VM, Ai F. et al. An image-based approach to understanding the physics of MR artifacts. Radiographics 2011; 31 (03) 849-866
- 46 Singh DR, Chin MSM, Peh WCG. Artifacts in musculoskeletal MR imaging. Semin Musculoskelet Radiol 2014; 18 (01) 12-22
- 47 Peh WCG, Chan JHM. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001; 30 (04) 179-191
- 48 Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 2021; 216 (03) 704-717
- 49 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
- 50 Murthy S, Fritz J. Metal artifact reduction MRI in the diagnosis of periprosthetic hip joint infection. Radiology 2023; 306 (03) e220134
- 51 Cha JG, Jin W, Lee MH. et al. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging—phantom and clinical studies. Radiology 2011; 259 (03) 885-893
- 52 Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol 2019; 23 (03) e68-e81
- 53 Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol 2012; 199 (06) W735-W742
- 54 Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CWA. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265 (01) 204-214
- 55 Fritz J, Fritz B, Thawait GK. et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol 2016; 45 (10) 1345-1356
- 56 Seo S, Do WJ, Luu HM, Kim KH, Choi SH, Park SH. Artificial neural network for slice encoding for metal artifact correction (SEMAC) MRI. Magn Reson Med 2020; 84 (01) 263-276
- 57 Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 2008; 65 (01) 29-35
- 58 Kästel T, Heiland S, Bäumer P, Bartsch AJ, Bendszus M, Pham M. Magic angle effect: a relevant artifact in MR neurography at 3T?. AJNR Am J Neuroradiol 2011; 32 (05) 821-827
- 59 Guerini H, Omoumi P, Guichoux F. et al. Fat suppression with Dixon techniques in musculoskeletal magnetic resonance imaging: a pictorial review. Semin Musculoskelet Radiol 2015; 19 (04) 335-347
- 60 Omoumi P. The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol 2022; 51 (07) 1365-1369
- 61 Kirchgesner T, Acid S, Perlepe V, Lecouvet F, Vande Berg B. Two-point Dixon fat-water swapping artifact: lesion mimicker at musculoskeletal T2-weighted MRI. Skeletal Radiol 2020; 49 (12) 2081-2086
- 62 Hodler J. Technical errors in MR arthrography. Skeletal Radiol 2008; 37 (01) 9-18
- 63 Chin TY, Campbell RSD. Arthrographic technique pitfalls. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer; 2017: 99-119
- 64 Meek RD, Mills MK, Hanrahan CJ. et al. Pearls and pitfalls for soft-tissue and bone biopsies: a cross-institutional review. Radiographics 2020; 40 (01) 266-290
- 65 Yan YY, Chou H, Peh WCG. Imaging-guided biopsy. In: Ladeb MF, Vanhoenacker FM. eds. Imaging of Primary Tumors of the Osseous Spine. Cham, Switzerland: Springer; 2024: 129-149
- 66 Kransdorf MJ, Jelinek JS. Musculoskeletal biopsy pitfalls. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer; 2017: 149-163
- 67 Saifuddin A, Palloni V, du Preez H, Junaid SE. Review article: the current status of CT-guided needle biopsy of the spine. Skeletal Radiol 2021; 50 (02) 281-299
- 68 Rajeswaran G, Healy JC. Ultrasound-guided musculoskeletal interventional techniques pitfalls. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer; 2017: 121-138
- 69 Walter WR, Burke CJ, Adler RS. Tips and tricks in ultrasound-guided musculoskeletal interventional procedures. J Ultrason 2023; 23 (95) e347-e357
- 70 Mallinson PI, Munk PL. Musculoskeletal interventional techniques pitfalls. In: Peh WCG. ed. Pitfalls in Musculoskeletal Radiology. Cham, Switzerland: Springer: 2017: 139-148
- 71 Zhang Y, Peng Q, Sun C. et al. Robot versus fluoroscopy assisted vertebroplasty and kyphoplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis. World Neurosurg 2022; 166: 120-129
- 72 Espahbodinea S, Ku JC, Costa Alves Junior A. et al. Percutaneous vertebral augmentation-pearls and pitfalls. J Spine Surg 2023; 9 (01) 13-16
- 73 Singh DK, Kumar N, Rustagi A, Jalan D, Krishna LG, Sharma A. Percutaneous CT-guided radiofrequency ablation of osteoid osteoma: potential pitfalls and complications and how to avoid them. J Clin Orthop Trauma 2022; 28: 101869
- 74 Tomasian A, Jennings JW. Percutaneous minimally invasive thermal ablation of osseous metastases: evidence-based practice guidelines. AJR Am J Roentgenol 2020; 215 (02) 502-510
- 75 Yan YY, Walsh JP, Munk PL. et al. A single-center 10-year retrospective analysis of cryoablation for the management of desmoid tumors. J Vasc Interv Radiol 2021; 32 (09) 1277-1287