RSS-Feed abonnieren

DOI: 10.1055/s-0044-1800838
Comparison of Collagen Fiber and Callus Deposition on Geopolymer-Carbonated Hydroxyapatite Nanocomposite Doped with Magnesium and Strontium on Days 14 and 28 Using Masson's Trichrome

Abstract
Objectives
This study aimed to evaluate collagen fiber deposition and callus formation on geopolymer-carbonated hydroxyapatite (CHA) nanocomposites-doped with magnesium (Mg) and strontium (Sr) on days 14 and 28 in the tibia of New Zealand rabbits.
Materials and Methods
Geopolymer-CHA-Mg-Sr nanocomposite samples with a diameter of 3 mm and a height of 6 mm were placed in the tibia of eight New Zealand rabbits. Experimental subjects were randomly divided into two groups to evaluate collagen fiber deposition and callus formation on days 14 and 28 histomorphologically.
Statistical Analysis
T-test was performed, and p < 0.05 was considered statistically significant using Minitab version 13.
Results
There was no significant difference in collagen deposition and callus formation on the geopolymer-CHA-Mg-Sr surface on days 14 and 28 with p-values 0.075 and 0.842, respectively.
Conclusion
Geopolymer-CHA-Mg-Sr is biocompatible, bioinert, and osteoconductive, and its mechanical properties meet the dentin standard values for hardness, while the modulus of elasticity, compressive, and tensile strength meets the enamel standard values.
Publikationsverlauf
Artikel online veröffentlicht:
05. März 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Al-Molla BH, Al-Ghaban N, Taher A. In vivo immunohistochemical investigation of bone deposition at amelogenin coated Ti implant surface. Smile Dent J 2014; 9 (01) 12-17
- 2 Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World J Clin Cases 2015; 3 (01) 52-57
- 3 Shi J, Li Y, Gu Y, Qiao S, Zhang X, Lai H. Effect of titanium implants with strontium incorporation on bone apposition in animal models: a systematic review and meta-analysis. Sci Rep 2017; 7 (01) 15563
- 4 Apratim A, Eachempati P, Krishnappa Salian KK, Singh V, Chhabra S, Shah S. Zirconia in dental implantology: a review. J Int Soc Prev Community Dent 2015; 5 (03) 147-156
- 5 Chun KJ, Lee JY. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads. J Dent Biomech 2014; 5 (10) 1758736014555246
- 6 Ramazanoglu M, Oshida Y. Osseointegration and bioscience of implant surface-current concepts at bone-implant interface. In IIser Turkyilmaz (Ed.) In: Implant Dentistry - A Rapidly Evolving Practice. Vol. 8. 2011: 57-82
- 7 Isa ZM. Dental implants: biomaterial, biomechanical, and biological considerations. Annal Dent Univ Malaya 2000; 7 (01) 27-35
- 8 Cui WF, Liu N, Qin GW. Microstructures, mechanical properties and corrosion resistance of the Zr e x Ti (Ag) alloys for dental implant application. J Mat Chem Phys 2016; (06) 161-166
- 9 Sales A, Singh A, Zehra M, Naim H. Factors affecting osseointegration of dental implants: a review. J Int Dent Med Res 2023; 16 (03) 1272-1279
- 10 Łukaszewska-Kuska M, Krawczyk P, Martyla A, Hędzelek W, Dorocka-Bobkowska B. Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent Med Probl 2019; 56 (02) 123-129
- 11 Smeets R, Stadlinger B, Schwarz F. et al. Review article impact of dental implant surface modifications on osseointegration. BioMed Res Int 2016; (07) 1-16
- 12 Colombo JS, Satoshi S, Okazaki J, Crean SJ, Sloan AJ, Waddington RJ. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. J Dent 2012; 40 (04) 338-346
- 13 Kuroda K, Okido M. Review article: hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity. Bioinorg Chem Appl 2012; 9 (02) 1-7
- 14 Xuereb M, Camilleri J, Attard NJ. Systematic review of current dental implant coating materials and novel coating techniques. Int J Prosthodont 2015; 28 (01) 51-59
- 15 Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34 (13) 3174-3183
- 16 Wang H, Li H, Yan F. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf A Physicochem Eng Asp 2005; 268 (01) 1-6
- 17 Catauro M, Bollino F, Papale F, Lamanna G. Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer. Mater Sci Eng C 2014; 36 (12) 20-24
- 18 Sauffi AS, Mastura W, Ibrahim W, Mustafa M, Bakri A. A review of carbonate minerals as an additive to geopolymer materials a review of carbonate minerals as an additive to geopolymer materials. Mater Sci Eng 2019; 551 (01) 012084
- 19 Chen L, Wang Z, Wang Y, Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel) 2016; 9 (09) 1-12
- 20 Rovnanik P. Effect of Curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 2014; 24 (07) 1176-1183
- 21 Muslimin H, Pane I, Imran I, Budiono B. Compressive strength of fly ash-based geopolymer concrete with a variable of sodium hydroxide (NaOH) solution molarity. MATEC Web Conf 2018; 147 (01) 01004
- 22 Blaszczynski T, Król M. Alkaline activator impact on the geopolymer binders. IOP Conf Series Mater Sci Eng 2017; 245 (02) 022036
- 23 Catauro M, Bollino F, Kansal I, Kamseu L, Lancellotti I, Leonelli C. Mechanical and biological characterization of geopolymers for potential application as biomaterials. Azo J Mater 2012; (05) 0322
- 24 Tippayasam C, Sutikulsombat C, Kamseu E. et al. In vitro surface reaction in sbf of a non-crystalline aluminosilicate (geopolymer) material. J Aust Ceram Soc 2018; 55 (06) 11-17
- 25 Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H. The mechanical properties and solubility of strontium-substituted hydroxyapatite. Biomed Mater Eng 1991; 1 (01) 11-17
- 26 LeGeros RZ, Kijkowska R, Bautista C, LeGeros JP. Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. Connect Tissue Res 1995; 33 (1-3): 203-209
- 27 Boyd AR, Rutledge L, Randolph LD, Meenan BJ. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater Sci Eng C 2015; 46 (01) 290-300
- 28 Landi E, Sprio S, Sandri M, Celotti G, Tampieri A. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater 2008; 4 (03) 656-663
- 29 Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 2011; 29 (06) 981-991
- 30 Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 2012; 136 (02) 216-226
- 31 Li M, He P, Wu Y. et al. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway. Sci Rep 2016; 6 (06) 32323
- 32 Marsell R, Einhorn TA. The biology of fracture healing. Injury 2011; 42 (06) 551-555
- 33 Terheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration–communication of cells. Clin Oral Implants Res 2012; 23 (10) 1127-1135
- 34 Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone 2016; 86 (03) 119-130
- 35 Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 2017; 6 (03) 87-100
- 36 Mescher AL. Junqueira's Basic Histology. 15th ed.. New York: McGraw Hill; 2018: 103-104 ,145,148
- 37 Chun K, Choi H, Lee J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014; 5 (01) 1758736014520809
- 38 Marshall Jr GW, Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent 1997; 25 (06) 441-458
- 39 Park S, Wang DH, Zhang D, Romberg E, Arola D. Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med 2008; 19 (06) 2317-2324
- 40 Sharma A, Ahmad J. Factors affecting compressive strength of geopolymer concrete-a review. IRJET 2017; 4 (04) 2026-2031
- 41 Cho S. Geopolymer Composites and Their Applications in Stress Wave Mitigation. University of Illinois at Urbana-Champaign 2015: 1-139
- 42 Zreiqat H, Howlett CR, Zannettino A. et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002; 62 (02) 175-184
- 43 Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 2013; 31 (10) 594-605
- 44 Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 2013; 5 (08) 3022-3033
- 45 Díaz-Tocados JM, Herencia C, Martínez-Moreno JM. et al. Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells. Sci Rep 2017; 7 (01) 7839
- 46 Zhao SF, Jiang QH, Peel S, Wang XX, He FM. Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clin Oral Implants Res 2013; 24 (08, suppl A100): 34-41
- 47 Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 2013; 2 (12) 447
- 48 Tao ZS, Zhou WS, He XW. et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C 2016; 62 (05) 226-232
- 49 Tan S, Zhang B, Zhu X. et al. Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials. BioMed Res Int 2014; 2014 (03) 814057
- 50 Lan TH, Du JK, Pan CY, Lee HE, Chung WH. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin Oral Investig 2012; 16 (02) 363-369
- 51 Albrektsson T, Johansson C. Quantified bone tissue reactions to various metallic materials with reference to the so-called osseointegration concept. In: Davies JE, ed. The Bone-Biomaterial Interface. Toronto: University of Toronto Press; 1991. 357-363
- 52 Doillon CJ, Dunn MG, Bender E, Silver FH. Collagen fiber formation in repair tissue: development of strength and toughness. Coll Relat Res 1985; 5 (06) 481-492
- 53 Meng X, Ziadlou R, Grad S. et al. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int 2020; 2020 (01) 9659412
- 54 Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J (Isfahan) 2012; 9 (01) 111-118
- 55 Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007; 13 (03) 1-10