CC BY 4.0 · Yearb Med Inform 2024; 33(01): 241-248
DOI: 10.1055/s-0044-1800751
Section 10: Natural Language Processing
Synopsis

Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI

Cyril Grouin
1   Université Paris Saclay, CNRS, LISN, 91400 Orsay, France
,
Natalia Grabar
2   UMR8163 STL, CNRS, Université de Lille, Domaine du Pont-de-bois, 59653 Villeneuve-d'Ascq cedex, France
› Author Affiliations

Summary

Objectives: This synopsis gives insights into scientific publications from 2023 in Natural Language Processing for the biomedical domain. We present the process we followed to identify candidates for NLP's best papers and the two best papers of this year. We also analyze the current trends in the 2023 publications.

Methods: We queried two bibliographic databases (Medline and the ACL anthology) and refined the outputs through automatic scoring. We then manually shortlisted publications to review and selected candidate papers through an adjudication process. External reviewers assessed the interest of the 13 selected candidates. At last, the section editors chose the best NLP papers.

Results: We collected 2,148 papers published in 2023, of which two were the best and selected as part of this NLP synopsis. Both address language models and propose solutions for data augmenta-tion, domain-specific model adaptation, and model distillation. Work is done on social media con-tent and electronic health records, using deep learning approaches such as ChatGPT and large lan-guage models.

Conclusion: Trends from 2023 cover classical NLP tasks (information extraction, text categoriza-tion, sentiment analysis), existing topics from several years (medical education), mainstream applications (Chatbots, generative approaches), and specific issues (cancer, COVID-19, mental health). Specifically for COVID-19, current researches deal with post-COVID-19 conditions, and they explore the understanding of how this pandemic has been managed and welcomed by populations. In addition, due to language models, a few works have been done to process languages other than English, especially using language portability approaches.



Publication History

Article published online:
08 April 2025

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 PM Nadkarni, L Ohno-Machado, and WW Chapman. Natural Language Processing: an introduction. J Am Med Inform Assoc, 2011:18(5):544-51. DOI: 10.1136/amiajnl-2011-000464
  • 2 C Friedman and G Hripcsak. Natural language processing and its future in medicine. Academic Medicine, 1999:74(8):890-5. DOI: 10.1097/00001888-199908000-00012
  • 3 RSYC Tan, Q Lin, GH Low, R Lin, TC Goh, CCE Chang, et al. Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting. J Am Med Inform Assoc, 2023:30(10):1657-64. DOI: 10.1093/jamia/ocad133
  • 4 O Rohanian, M Nouriborji, S Kouchaki, and DA Clifton. On the effectiveness of compact biomedical transformers. Bioinformatics, 2023:39(3):btad103. doi: 10.1093/bioinformatics/btad103
  • 5 C Tran, S Khadkikar, and A Porollo. Survey of Protein Sequence Embedding Models. Int J Mol Sci, 2023:24(4):3775. DOI: 10.3390/ijms24043775
  • 6 A Yoshimori and J Bajorath. Motif2Mol: Prediction of New Active Compounds Based on Sequence Motifs of Ligand Binding Sites in Proteins Using a Biochemical Language Model. Biomolecules, 2023:13(5):833. DOI: 10.3390/biom13050833
  • 7 MF Danilevicz, M Gill, CG Tay Fernandez, J Petereit, SR Upadhyaya, J Batley, et al. DNABERT-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J, 2023:21:5676-85. DOI: 10.1016/j.csbj.2023.11.025
  • 8 S Wang, Y Liu, Y Liu, Y Zhang, and X Zhu. BERT-5mC: an interpretable model for predicting 5-methylcytosine sites of DNA based on BERT. PeerJ, 2023:11:e16600. DOI: 10.7717/peerj.16600
  • 9 Y Ma, Y Pei, and C Li. Predictive Recognition of DNA-binding Proteins Based on Pre-trained Language Model BERT. J Bioinform Comput Biol, 2023:21(6):2350028. DOI: 10.1142/S0219720023500282
  • 10 JC Boucher, SY Kim, G Jessiman-Perreault, J Edwards, H Smith, N Frenette, et al. HPV vaccine narratives on Twitter during the COVID-19 pandemic: a social network, thematic, and sentiment analysis. BMC Public Health, 2023:23(1):694. DOI: 10.1186/s12889-023-15615-w
  • 11 Z Zaidi, M Ye, F Samon, A Jama, B Gopalakrishnan, C Gu, et al. Topics in Antivax and Provax Discourse: Yearlong Synoptic Study of COVID-19 Vaccine Tweets. J Med Internet Res, 2023:25:e45069. DOI: 10.2196/45069
  • 12 L Lösch, T Zuiderent-Jerak, F Kunneman, E Syurina, M Bongers, ML Stein, et al. Capturing Emerging Experiential Knowledge for Vaccination Guidelines Through Natural Language Processing: Proof-of-Concept Study. J Med Internet Res, 2023:25:e44461. DOI: 10.2196/44461
  • 13 A Unlu, S Truong, T Tammi, and AL Lohiniva. Exploring Political Mistrust in Pandemic Risk Communication: Mixed-Method Study Using Social Media Data Analysis. J Med Internet Res, 2023:25:e50199. DOI: 10.2196/50199
  • 14 H Ayadi, C Bour, A Fischer, M Ghoniem, and G Fagherazzi. The Long COVID experience from a patient's perspective: a clustering analysis of 27,216 Reddit posts. Front Public Health, 2023:11:1227807. DOI: 10.3389/fpubh.2023.1227807
  • 15 E Dolatabadi, D Moyano, M Bales, S Spasojevic, R Bhambhoria, J Bhatti, et al. Using Social Media to Help Understand Patient-Reported Health Outcomes of Post-COVID-19 Condition: Natural Language Processing Approach. J Med Internet Res, 2023:25:e45767. DOI: 10.2196/45767
  • 16 J Zhu, N Yalamanchi, R Jin, DR Kenne, and NH Phan. Investigating COVID-19's Impact on Mental Health: Trend and Thematic Analysis of Reddit Users' Discourse. J Med Internet Res, 2023:25:e46867. DOI: 10.2196/46867
  • 17 D Catalan-Matamoros, I Prieto-Sanchez, and A Langbecker. Crisis Communication during COVID-19: English, French, Portuguese, and Spanish Discourse of AstraZeneca Vaccine and Omicron Variant on Social Media. Vaccines (Basel), 2023:11(6):1100. DOI: 10.3390/vaccines11061100
  • 18 H Chin, G Lima, M Shin, A Zhunis, C Cha, J Choi, et al. User-Chatbot Conversations During the COVID-19 Pandemic: Study Based on Topic Modeling and Sentiment Analysis. J Med Internet Res, 2023:25:e40922. DOI: 10.2196/40922
  • 19 F Moutsana Tapolin, J Liaskos, E Zoulias, and J Mantas. A Conversational Web-Based Chatbot to Disseminate COVID-19 Advisory Information. Stud Health Technol Inform, 2023:305:483-86. DOI: 10.3233/SHTI230538
  • 20 MJ Althobaiti. An open-source dataset for arabic fine-grained emotion recognition of online content amid COVID-19 pandemic. Data Brief, 2023:51:109745. doi: 10.1016/j.dib.2023.109745
  • 21 S Alhumoud, A Al Wazrah, L Alhussain, L Alrushud, A Aldosari, RN Altammami, et al. ASAVACT: Arabic sentiment analysis for vaccine-related COVID-19 tweets using deep learning. PeerJ Comput Sci, 2023:9:e1507. DOI: 10.7717/peerj-cs.1507
  • 22 E Zhu, Q Sheng, H Yang, Y Liu, T Cai, and J Li. A unified framework of medical information annotation and extraction for Chinese clinical text. Artif Intell Med, 2023:142:102573. DOI: 10.1016/j.artmed.2023.102573
  • 23 J Wei, T Hu, J Dai, Z Wang, P Han, and W Huang. Research on named entity recognition of adverse drug reactions based on NLP and deep learning. Front Pharmacol, 2023:14:1121796. DOI: 10.3389/fphar.2023.1121796
  • 24 ZY Feng, XH Wu, JL Ma, M Li, GF He, DS Cao, et al. DKADE: a novel framework based on deep learning and knowledge graph for identifying adverse drug events and related medications. Brief Bioinform, 2023:24(4):bbad228. DOI: 10.1093/bib/bbad228
  • 25 M Li, C Gao, K Zhang, H Zhou, and J Ying. A weakly supervised method for named entity recognition of Chinese electronic medical records. Med Biol Eng Comput, 2023:61(10):2733-43. DOI: 10.1007/s11517-023-02871-6
  • 26 J Cai, S Chen, S Guo, S Wang, L Li, X Liu, et al. RegEMR: a natural language processing system to automatically identify premature ovarian decline from Chinese electronic medical records. BMC Med Inform Decis Mak, 2023:23(1):126. DOI: 10.1186/s12911-023-02239-8
  • 27 H Peng, Z Zhang, D Liu, and X Qin. Chinese medical entity recognition based on the dual-branch TENER model. BMC Med Inform Decis Mak, 2023:23(1):136. DOI: 10.1186/s12911-023-02243-y
  • 28 X Xu, Y Chang, J An, and Y Du. Chinese text classification by combining Chinese-BERTology-wwm and GCN. PeerJ Comput Sci, 2023:9:e1544. DOI: 10.7717/peerj-cs.1544
  • 29 L Fu, Z Weng, J Zhang, H Xie, and Y Cao. MMBERT: a unified framework for biomedical named entity recognition. Med Biol Eng Comput, 2023:62(1):327-41. doi: 10.1007/s11517-023-02934-8
  • 30 MW Ma, XS Gao, ZY Zhang, SY Shang, L Jin, PL Liu, et al. Extracting laboratory test information from paper-based reports. BMC Med Inform Decis Mak, 2023:23(1):251. doi: 10.1186/s12911-023-02346-6
  • 31 H Sun, K Zhang, W Lan, Q Gu, G Jiang, X Yang, et al. An AI Dietitian for Type 2 Diabetes Mellitus Management Based on Large Language and Image Recognition Models: Preclinical Concept Validation Study. J Med Internet Res, 2023:25:e51300. DOI: 10.2196/51300
  • 32 J Liu and T Jiang. Methods for Analyzing Unknown Health Risk Based on Nature Language Process (NLP). Stud Health Technol Inform, 2023:308:633-9. DOI: 10.3233/SHTI230894
  • 33 Z Cui, K Yu, Z Yuan, X Dong, and W Luo. Language inference-based learning for Low-Resource Chinese clinical named entity recognition using langage model. J Biomed Inform, 2023:149:104559. DOI: 10.1016/j.jbi.2023.104559
  • 34 K Anetta. Understanding Health Records in West Slavic Languages: Available Resources, Case Study in Oncology. Stud Health Technol Inform, 2023:305:97-101. DOI: 10.3233/SHTI230433
  • 35 B van Es, LC Reteig, SC Tan, M Schraagen, MM Hemker, SRS Arends, et al. Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods. BMC Bioinformatics, 2023:24(1):10. DOI: 10.1186/s12859-022-05130-x
  • 36 TM Seinen, JA Kors, EM van Mulligen, E Fridgeirsson, and PR Rijnbeek. The added value of text from Dutch general practitioner notes in predictive modeling. J Am Med Inform Assoc, 2023:30(12):1973-84. DOI: 10.1093/jamia/ocad160
  • 37 M Homburg, E Meijer, M Berends, T Kupers, T Olde Hartman, J Muris, et al. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study. J Med Internet Res, 2023:25:e49944. DOI: 10.2196/49944
  • 38 H Šuvalov, S Laur, and R Kolde. Information Extraction from Medical Texts with BERT Using Human-in-the-Loop Labeling. Stud Health Technol Inform, 2023:302:831-2. DOI: 10.3233/SHTI230281
  • 39 T Fabacher, EA Sauleau, N Leclerc Du Sablon, H Bergier, JE Gottenberg, et al. Evaluating the Portability of Rheumatoid Arthritis Phenotyping Algorithms: A Case Study on French EHRs. Stud Health Technol Inform, 2023:302:768-72. DOI: 10.3233/SHTI230263
  • 40 X Chen, C Faviez, M Vincent, S Saunier, N Garcelon, and A Burgun. Improving Patient Similarity Using Different Modalities of Phenotypes Extracted from Clinical Narratives. Stud Health Technol Inform, 2023:302:1037-41. DOI: 10.3233/SHTI230342
  • 41 TD Le, R Noumeir, J Rambaud, G Sans, and P Jouvet. Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes Representation Learning. IEEE J Transl Eng Health Med, 2023:11:469-78. DOI: 10.1109/JTEHM.2023.3241635
  • 42 JSM Gable, R Sauvayre, and C Chauvière. Fight Against the Mandatory COVID-19 Immunity Passport on Twitter: Natural Language Processing Study. J Med Internet Res, 2023:25:e49435. DOI: 10.2196/49435
  • 43 M Jantscher, F Gunzer, R Kern, E Hassler, S Tschauner, and G Reishofer. Information extraction from German radiological reports for general clinical text and language understanding. Sci Rep, 2023:13(1):2353. DOI: 10.1038/s41598-023-29323-3
  • 44 J Frei and F Kramer. German Medical Named Entity Recognition Model and Data Set Creation Using Machine Translation and Word Alignment: Algorithm Development and Validation. JMIR Form Res, 2023:7:e39077. DOI: 10.2196/39077
  • 45 S Nowak, D Biesner, YC Layer, M Theis, H Schneider, W Block, et al. Transformer-based structuring of free-text radiology report databases. Eur Radiol, 2023:33(6):4228-36. DOI: 10.1007/s00330-023-09526-y
  • 46 F Meineke, L Modersohn, M Loeffler, and M Boeker. Announcement of the German Medical Text Corpus Project (GeMTeX). Stud Health Technol Inform, 2023:302:835-6. DOI: 10.3233/SHTI230283
  • 47 J Frei and F Kramer. Annotated dataset creation through large language models for non-english medical NLP. J Biomed Inform, 2023:145:104478. DOI: 10.1016/j.jbi.2023.104478
  • 48 J Frei, L Frei-Stuber, and F Kramer. GERNERMED++: Semantic annotation in German medical NLP through transfer-learning, translation and word alignment. J Biomed Inform, 2023:147:104513. DOI: 10.1016/j.jbi.2023.104513
  • 49 A Katika, E Zoulias, V Koufi, and F Malamateniou. Mining Greek Tweets on Long COVID Using Sentiment Analysis and Topic Modeling. Stud Health Technol Inform, 2023:305:545-8. DOI: 10.3233/SHTI230554
  • 50 R Catelli, S Pelosi, C Comito, C Pizzuti, and M Esposito. Lexicon-based sentiment analysis to detect opinions and attitude towards COVID-19 vaccines on Twitter in Italy. Comput Biol Med, 2023:158:106876. DOI: 10.1016/j.compbiomed.2023.106876
  • 51 J Franceschi, L Pareschi, E Bellodi, M Gavanelli, and M Bresadola. Modeling opinion polarization on social media: Application to Covid-19 vaccination hesitancy in Italy. PLoS One, 2023:18(10):e0291993. DOI: 10.1371/journal.pone.0291993
  • 52 A Cappello, S Mora, DR Giacobbe, M Bassetti, and M Giacomini. Defining a Preprocessing Pipeline for the MULTI-SITA Project and General Medical Italian Natural Language Data. Stud Health Technol Inform, 2023. 309:48-52. DOI: 10.3233/SHTI230737
  • 53 C Crema, TM Buonocore, S Fostinelli, E Parimbelli, F Verde, C Fundarò, et al. Advancing Italian biomedical information extraction with transformers-based models: Methodological insights and multicenter practical application. J Biomed Inform, 2023:148:104557. DOI: 10.1016/j.jbi.2023.104557
  • 54 S Wang, H Ning, X Huang, Y Xiao, M Zhang, EF Yang, et al. Public Surveillance of Social Media for Suicide Using Advanced Deep Learning Models in Japan: Time Series Study From 2012 to 2022. J Med Internet Res, 2023:25:e47225. DOI: 10.2196/47225
  • 55 A Maeda-Minami, T Yoshino, T Yumoto, K Sato, A Sagara, K Inaba, et al. Development of a novel drug information provision system for Kampo medicine using natural language processing technology. BMC Med Inform Decis Mak, 2023:23(1):119. DOI: 10.1186/s12911-023-02230-3
  • 56 T Kuroiwa, A Sarcon, T Ibara, E Yamada, A Yamamoto, K Tsukamoto, et al. The Potential of ChatGPT as a Self-Diagnostic Tool in Common Orthopedic Diseases: Exploratory Study. J Med Internet Res, 2023:25:e47621. DOI: 10.2196/47621
  • 57 T Hirosawa, R Kawamura, Y Harada, K Mizuta, K Tokumasu, Y Kaji, et al. ChatGPT-Generated Differential Diagnosis Lists for Complex Case-Derived Clinical Vignettes: Diagnostic Accuracy Evaluation. JMIR Med Inform, 2023:11:e48808. DOI: 10.2196/48808
  • 58 K Sugimoto, S Wada, S Konishi, K Okada, S Manabe, Y Matsumura, et al. Extracting Clinical Information From Japanese Radiology Reports Using a 2-Stage Deep Learning Approach: Algorithm Development and Validation. JMIR Med Inform, 2023:11:e49041. DOI: 10.2196/49041
  • 59 S Kim, T Kang, Tae Kyu Chung, Y Choi, YS Hong, K Jung, et al. Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques. Drug Saf, 2023:46(8):781-95. DOI: 10.1007/s40264-023-01323-2
  • 60 HN Moussa and A Mourhir. DarNERcorp: An annotated named entity recognition dataset in the Moroccan dialect. Data Brief, 2023:48:109234. DOI: 10.1016/j.dib.2023.109234
  • 61 GT Berge, OC Granmo, TO Tveit, BE Munkvold, AL Ruthjersen, and J Sharma. Machine learning-driven clinical decision support system for concept-based searching: a field trial in a Norwegian hospital. BMC Med Inform Decis Mak, 2023:23(1):5. DOI: 10.1186/s12911-023-02101-x
  • 62 A Lamproudis, S Mora, TO Svenning, T Torsvik, T Chomutare, PD Ngo, et al. De-identifying Norwegian Clinical Text using Resources from Swedish and Danish. AMIA Annu Symp Proc, 2024:456-64. [Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc10785939/]
  • 63 A Yazdani, M Shamloo, M Khaki, and A Nahvijou. Use of sentiment analysis for capturing hospitalized cancer patients' experience from free-text comments in the Persian language. BMC Med Inform Decis Mak, 2023:23(1):275. DOI: 10.1186/s12911-023-02358-2
  • 64 N Loukachevitch, S Manandhar, E Baral, I Rozhkov, P Braslavski, V Ivanov, et al. NEREL-BIO: a dataset of biomedical abstracts annotated with nested named entities. Bioinformatics, 2023:39(4):btad161. DOI: 10.1093/bioinformatics/btad161
  • 65 M Chizhikova, P López-Úbeda, J Collado-Montañez, T Martín-Noguerol, MC Díaz-Galiano, A Luna, et al. CARES: A Corpus for classification of Spanish Radiological reports. Comput Biol Med, 2023:154:106581. DOI: 10.1016/j.compbiomed.2023.106581
  • 66 L Campillos-Llanos. MedLexSp - a medical lexicon for Spanish medical natural language processing. J Biomed Semantics, 2023:14(1):2. DOI: 10.1186/s13326-022-00281-5
  • 67 I Goenaga, E Andres, K Gojenola, and A Atutxa. Advances in monolingual and crosslingual automatic disability annotation in Spanish. BMC Bioinformatics, 2023:24(1):265. DOI: 10.1186/s12859-023-05372-3
  • 68 I de la Iglesia, M Vivó, P Chocrón, G de Maeztu, K Gojenola, and A Atutxa. An open source corpus and automatic tool for section identification in Spanish health records. J Biomed Inform, 2023:145:104461. DOI: 10.1016/j.jbi.2023.104461
  • 69 DM Mendoza-Urbano, J Felipe Garcia, JS Moreno, JC Bravo-Ocaña, AJ Riascos, A Zambrano Harvey, et al. Automated extraction of information from free text of Spanish oncology pathology reports. Colomb Med (Cali), 2023:54(1):e2035300. DOI: 10.25100/cm.v54i1.5300
  • 70 O Solarte-Pabón, O Montenegro, A García-Barragán, M Torrente, M Provencio, E Menasalvas, et al. Transformers for extracting breast cancer information from Spanish clinical narratives. Artif Intell Med, 2023:143:102625. DOI: 10.1016/j.artmed.2023.102625
  • 71 E Bergman, L Dürlich, V Arthurson, A Sundström, M Larsson, S Bhuiyan, et al. BERT based natural language processing for triage of adverse drug reaction reports shows close to human-level performance. PLOS Digit Health, 2023:2(12):e0000409. DOI: 10.1371/journal.pdig.0000409
  • 72 Y Li, RM Wehbe, FS Ahmad, H Wang, and Y Luo. A comparative study of pretrained language models for long clinical text. J Am Med Inform Assoc, 2022:30(2):340-7. DOI: 10.1093/jamia/ocac225
  • 73 L Wang, H He, A Wen, S Moon, S Fu, KJ Peterson, et al. Acquisition of a Lexicon for Family History Information: Bidirectional Encoder Representations From Transformers-Assisted Sublanguage Analysis. JMIR Med Inform, 2023:11:e48072. DOI: 10.2196/48072
  • 74 KH Weng, CF Liu, and CJ Chen. Deep Learning Approach for Negation and Speculation Detection for Automated Important Finding Flagging and Extraction in Radiology Report: Internal Validation and Technique Comparison Study. JMIR Med Inform, 2023:11:e46348. DOI: 10.2196/46348
  • 75 Y Liao, H Liu, and I Spasić. Fine-tuning coreference resolution for different styles of clinical narratives. J Biomed Inform, 2023:149:104578. DOI: 10.1016/j.jbi.2023.104578
  • 76 PJ Chambon, C Wu, JM Steinkamp, J Adleberg, TS Cook, and CP Langlotz. Automated deidentification of radiology reports combining transformer and “hide in plain sight” rule-based methods. J Am Med Inform Assoc, 2022:30(2):318-28. DOI: 10.1093/jamia/ocac219
  • 77 H Dong, V Suárez-Paniagua, H Zhang, M Wang, A Casey, E Davidson, et al. Ontology-driven and weakly supervised rare disease identification from clinical notes. BMC Med Inform Decis Mak, 2023:23(1):86. DOI: 10.1186/s12911-023-02181-9
  • 78 S Sivarajkumar and Y Wang. HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural Language Processing. AMIA Annu Symp Proc, 2023:972-981. [Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc10148337/]
  • 79 S Datta and K Roberts. Weakly supervised spatial relation extraction from radiology reports. JAMIA Open, 2023:6(2):ooad027. DOI: 10.1093/jamiaopen/ooad027
  • 80 HA Xu, B Maccari, H Guillain, J Herzen, F Agri, and JL Raisaro. An End-to-End Natural Language Processing Application for Prediction of Medical Case Coding Complexity: Algorithm Development and Validation. JMIR Med Inform, 2023:11:e38150. DOI: 10.2196/38150
  • 81 MJ Kane, C King, D Esserman, NK Latham, EJ Greene, and DA Ganz. A compressed large language model embedding dataset of ICD 10 CM descriptions. BMC Bioinformatics, 2023:2023.04.24.23289046. doi: 10.1101/2023.04.24.23289046
  • 82 MM Zitu, S Zhang, DH Owen, C Chiang, and L Li. Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medical records. Front Pharmacol, 2023:14:1218679. DOI: 10.3389/fphar.2023.1218679
  • 83 AE Johnson, TJ Pollard, L Shen, LW Lehman, M Feng, M Ghassemi, et al. MIMIC-III, a freely accessible critical care database. Sci Data, 2016:3:160035. DOI: 10.1038/sdata.2016.35
  • 84 S Kim, J Cha, D Kim, and E Park. Understanding Mental Health Issues in Different Subdomains of Social Networking Services: Computational Analysis of Text-Based Reddit Posts. J Med Internet Res, 2023:25:e49074. DOI: 10.2196/49074
  • 85 M Afshar, S Adelaine, F Resnik, MP Mundt, J Long, M Leaf, et al. Deployment of Real-time Natural Language Processing and Deep Learning Clinical Decision Support in the Electronic Health Record: Pipeline Implementation for an Opioid Misuse Screener in Hospitalized Adults. JMIR Med Inform, 2023:11:e44977. DOI: 10.2196/44977
  • 86 SG Weiner, YC Lo, AD Carroll, L Zhou, A Ngo, DB Hathaway, et al. The Incidence and Disparities in Use of Stigmatizing Language in Clinical Notes for Patients With Substance Use Disorder. J Addict Med, 2023:17(4):424-30. DOI: 10.1097/ADM.0000000000001145
  • 87 T Kang, Y Sun, JH Kim, C Ta, A Perotte, K Schiffer, et al. EvidenceMap: a three-level knowledge representation for medical evidence computation and comprehension. J Am Med Inform Assoc, 2023:30(6):1022-31. DOI: 10.1093/jamia/ocad036
  • 88 Y Hu, VK Keloth, K Raja, Y Chen, and H Xu. Towards precise PICO extraction from abstracts of randomized controlled trials using a section-specific learning approach. Bioinformatics, 2023:39(9):btad542. DOI: 10.1093/bioinformatics/btad542
  • 89 A Newbury, H Liu, B Idnay, and C Weng. The suitability of UMLS and SNOMED-CT for encoding outcome concepts. J Am Med Inform Assoc, 2023:30(12):1895-903. DOI: 10.1093/jamia/ocad161
  • 90 A Dhrangadhariya and H Müller. Not so weak PICO: leveraging weak supervision for participants, interventions, and outcomes recognition for systematic review automation. JAMIA Open, 2023:6(1):ooac107. DOI: 10.1093/jamiaopen/ooac107
  • 91 E Orel, I Ciglenecki, A Thiabaud, A Temerev, A Calmy, O Keiser, et al. An Automated Literature Review Tool (LiteRev) for Streamlining and Accelerating Research Using Natural Language Processing and Machine Learning: Descriptive Performance Evaluation Study. J Med Internet Res, 2023:25:e39736. DOI: 10.2196/39736
  • 92 Y Lin, J Li, H Xiao, L Zheng, Y Xiao, H Song, et al. Automatic literature screening using the PAJO deep-learning model for clinical practice guidelines. BMC Med Inform Decis Mak, 2023:23(1):247. DOI: 10.1186/s12911-023-02328-8
  • 93 K Karapetian, SM Jeon, JW Kwon, and YK Suh. Supervised Relation Extraction Between Suicide-Related Entities and Drugs: Development and Usability Study of an Annotated PubMed Corpus. J Med Internet Res, 2023:25:e41100. DOI: 10.2196/41100
  • 94 Y Guo, W Qiu, G Leroy, S Wang, and T Cohen. Retrieval augmentation of large language models for lay language generation. J Biomed Inform, 2024:149:104580. DOI: 10.1016/j.jbi.2023.104580
  • 95 C Peng, X Yang, Z Yu, J Bian, WR Hogan, and Y Wu. Clinical concept and relation extraction using prompt-based machine reading comprehension. J Am Med Inform Assoc, 2023:30(9):1486-93. DOI: 10.1093/jamia/ocad107
  • 96 M Pillai, AC Griffin, CA Kronk, and T McCall. Toward Community-Based Natural Language Processing (CBNLP): Cocreating With Communities. J Med Internet Res, 2023:25:e48498. DOI: 10.2196/48498
  • 97 G Dong, A Bate, F Haguinet, G Westman, L Dürlich, A Hviid, and M Sessa. Optimizing Signal Management in a Vaccine Adverse Event Reporting System: A Proof-of-Concept with COVID-19 Vaccines Using Signs, Symptoms, and Natural Language Processing. Drug Saf, 2023:47(2):173-82. DOI: 10.1007/s40264-023-01381-6
  • 98 A Brown, AT Kumar, O Melamed, I Ahmed, YH Wang, A Deza, et al. A Motivational Interviewing Chatbot With Generative Reflections for Increasing Readiness to Quit Smoking: Iterative Development Study. JMIR Ment Health, 2023:10:e49132. DOI: 10.2196/49132
  • 99 TM Lai, CX Zhai, and H Ji. KEBLM: Knowledge-Enhanced Biomedical Language Models. J Biomed Inform, 2023:143:104392. DOI: 10.1016/j.jbi.2023.104392
  • 100 Y Jin, Y Xiong, D Shi, Y Lin, L He, Y Zhang, et al. Learning from undercoded clinical records for automated International Classification of Diseases (ICD) coding. J Am Med Inform Assoc, 2022:30(3):438-46. DOI: 10.1093/jamia/ocac230
  • 101 J Liu, C Wang, and S Liu. Utility of ChatGPT in Clinical Practice. J Med Internet Res, 2023:25:e48568. DOI: 10.2196/48568
  • 102 S Zhang, R Fan, Y Liu, S Chen, Q Liu, and W Zeng. Applications of transformer-based language models in bioinformatics: a survey. Bioinform Adv, 2023:3(1):vbad001. DOI: 10.1093/bioadv/vbad001
  • 103 J Stewart, J Lu, A Goudie, G Arendts, SA Meka, S Freeman, et al. Applications of natural language processing at emergency department triage: A narrative review. PLoS One, 2023:18(12):e0279953. DOI: 10.1371/journal.pone.0279953
  • 104 M Gholipour, R Khajouei, P Amiri, S Hajesmaeel Gohari, and L Ahmadian. Extracting cancer concepts from clinical notes using natural language processing: a systematic review. BMC Bioinformatics, 2023:24(1):405. DOI: 10.1186/s12859-023-05480-0
  • 105 D Reichenpfader, H Müller, and K Denecke. Large language model-based information extraction from free-text radiology reports: a scoping review protocol. BMJ Open, 2023:13(12):e076865. DOI: 10.1136/bmjopen-2023-076865
  • 106 D Keszthelyi, C Gaudet-Blavignac, M Bjelogrlic, and C Lovis. Patient Information Summarization in Clinical Settings: Scoping Review. JMIR Med Inform, 2023:11:e44639. DOI: 10.2196/44639
  • 107 JM Lane, D Habib, and B Curtis. Linguistic Methodologies to Surveil the Leading Causes of Mortality: Scoping Review of Twitter for Public Health Data. J Med Internet Res, 2023:25:e39484. DOI: 10.2196/39484
  • 108 Y Chi and HY Chen. Investigating Substance Use via Reddit: Systematic Scoping Review. J Med Internet Res, 2023:25:e48905. DOI: 10.2196/48905
  • 109 MR Boguslav, NM Salem, EK White, KJ Sullivan, M Bada, TL Hernandez, et al. Creating an ignorance-base: Exploring known unknowns in the scientific literature. J Biomed Inform, 2023:143:104405. DOI: 10.1016/j.jbi.2023.104405
  • 110 LS Liebovitch, W Powers, L Shi, A Chen-Carrel, P Loustaunau, and PT Coleman. Word differences in news media of lower and higher peace countries revealed by natural language processing and machine learning. PLoS One, 2023:18(11):e0292604. DOI: 10.1371/journal.pone.0292604
  • 111 BD Tran, K Latif, TL Reynolds, J Park, J Elston Lafata, M Tai-Seale, et al. “Mm-hm,” “Uh-uh”: are non-lexical conversational sounds deal breakers for the ambient clinical documentation technology? J Am Med Inform Assoc, 2023:30(4):703-11. DOI: 10.1093/jamia/ocad001